摘要
The formation of slag eye in a gas stirred ladle was studied through cold models and industrial trials. In the cold model,water and sodium tungstate solution were employed to simulate liquid steel,and silicon oil was employed to simulate slag. The simulation results revealed that the gas flow rate and bath height had strong effects on the slag eye size. In particular,the thickness of slag layer played a strong role in the slag eye size. In addition,the slag eye could not be formed when the thickness of the top layer was more than 4 cm in water-silicone oil model.Besides,the section area of vessel had a great impact on the slag eye size. Industrial trials results showed a similar trend that the gas flow rate was very significant on the slag eye size. The predictions of the existing models showed larger predictions deviations compared with the experimental data. Moreover,a new model without fitting parameters was developed based on force balance and mathematical derivation,and verified by the experimental data. The new model provides the prediction with small deviations by comparing with the data acquired from cold models and industrial trials.
The formation of slag eye in a gas stirred ladle was studied through cold models and industrial trials. In the cold model,water and sodium tungstate solution were employed to simulate liquid steel,and silicon oil was employed to simulate slag. The simulation results revealed that the gas flow rate and bath height had strong effects on the slag eye size. In particular,the thickness of slag layer played a strong role in the slag eye size. In addition,the slag eye could not be formed when the thickness of the top layer was more than 4 cm in water-silicone oil model.Besides,the section area of vessel had a great impact on the slag eye size. Industrial trials results showed a similar trend that the gas flow rate was very significant on the slag eye size. The predictions of the existing models showed larger predictions deviations compared with the experimental data. Moreover,a new model without fitting parameters was developed based on force balance and mathematical derivation,and verified by the experimental data. The new model provides the prediction with small deviations by comparing with the data acquired from cold models and industrial trials.
基金
financially supported by National Natural Science Foundation of China(51534001,51604003)
Natural Science Research Project of Anhui Province Universities(KJ2016A089)
Youth Foundation of Anhui University and Technology(QZ201502)