期刊文献+

SiO_2@C hollow sphere anodes for lithium-ion batteries 被引量:2

SiO_2@C hollow sphere anodes for lithium-ion batteries
原文传递
导出
摘要 As anode materials for lithium-ion batteries, SiO2 is of great interest because of its high capacity, low cost and environmental affinity. A facile approach has been developed to fabricate SiO2@C hollow spheres by hydrolysis of tetraethyl orthosilicate(TEOS) to form SiO2 shells on organic sphere templates followed by calcinations in air to remove the templates, and then the SiO2 shells are covered by carbon layers.Electron microscopy investigations confirm hollow structure of the SiO2@C. The SiO2@C hollow spheres with different SiO2 contents display gradual increase in specific capacity with discharge/charge cycling,among which the SiO2@C with SiO2 content of 67 wt% exhibits discharge/charge capacities of 653.4/649.6 mAh g^(-1) over 160 cycles at current density of 0.11 mA cm^(-2). The impedance fitting of the electrochemical impedance spectroscopy shows that the SiO2@C with SiO2 content of 67 wt% has the lowest charge transfer resistance, which indicates that the SiO2@C hollow spheres is promising anode candidate for lithium-ion batteries. As anode materials for lithium-ion batteries, SiO2 is of great interest because of its high capacity, low cost and environmental affinity. A facile approach has been developed to fabricate SiO2@C hollow spheres by hydrolysis of tetraethyl orthosilicate(TEOS) to form SiO2 shells on organic sphere templates followed by calcinations in air to remove the templates, and then the SiO2 shells are covered by carbon layers.Electron microscopy investigations confirm hollow structure of the SiO2@C. The SiO2@C hollow spheres with different SiO2 contents display gradual increase in specific capacity with discharge/charge cycling,among which the SiO2@C with SiO2 content of 67 wt% exhibits discharge/charge capacities of 653.4/649.6 mAh g^(-1) over 160 cycles at current density of 0.11 mA cm^(-2). The impedance fitting of the electrochemical impedance spectroscopy shows that the SiO2@C with SiO2 content of 67 wt% has the lowest charge transfer resistance, which indicates that the SiO2@C hollow spheres is promising anode candidate for lithium-ion batteries.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第3期239-245,共7页 材料科学技术(英文版)
基金 supported by the National Natural Science Foundation of China (Grant No. 51472083)
关键词 Silica Hollow spheres Carbon coating Anode Lithium-ion batteries Silica Hollow spheres Carbon coating Anode Lithium-ion batteries
  • 相关文献

同被引文献7

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部