期刊文献+

一类具有随机扰动的Schoner竞争系统的渐近性质 被引量:2

Asymptotic Properties for a Schoner Competitive System with Stochastic Perturbations
下载PDF
导出
摘要 对一类具有随机扰动的Schoner竞争系统进行了研究,利用随机微分方程中It积分公式、Lyapunov方法等理论得到了系统全局正解的存在唯一性以及系统正平衡点的全局渐近稳定性。最后,借助Matlab数学软件对所得的理论结果进行数值模拟与仿真,仿真结果进一步佐证了理论分析的正确性。 In this paper,a Schoner competitive system with stochastic perturbations is studied. By applying It' s integral formula,Lyapunov' s method in the stochastic differential equations,sufficient conditions for the existence and the uniqueness of global positive solutions,the global asymptotic stability of the positive equilibrium are derived. Finally,numerical simulations are also given with the help of Matlab software,the results of which in turn support the previous theoretical results from the other side.
作者 田宝单 邢璐
出处 《西南科技大学学报》 CAS 2017年第1期106-110,共5页 Journal of Southwest University of Science and Technology
基金 四川省教育厅科研基金(14ZB0115) 西南科技大学博士基金(15zx7138)
关键词 竞争系统 随机扰动 ITO公式 稳定性 Competitive system Stochastic perturbations It's formula Stability
  • 相关文献

参考文献2

二级参考文献47

  • 1G. T. Skalski and J. F. Gilliam, Functional responses with predator interference: Viable alternatives to the Holling type II model, Ecology 82 (2001) 3083-3092.
  • 2M. P. Hassell and C. C. Varley, New inductive population model for insect parasites and its bearing on biological control, Nature 223 (1969) 1133-1137.
  • 3J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Animal Ecol. 44 (1975) 331-341.
  • 4D. L. DeAngelis, R. A. Goldsten and R. Neill, A model for trophic interaction, Ecology 56 (1975) 881-892.
  • 5P. H. Crowley and E. K. Martin, Functional response and interference within and between year classes of a dragonfly population, J. N. Amer. Benthol. Soc. 8 (1989) 211-221.
  • 6S. Liu and E. Beretta, A stage-structured predator-prey model of Beddington-DeAngelis type, SIAM J. Appl. Math. 66 (2006) 1101-1129.
  • 7M. Zhao and S. Lv, Chaos in a three-species food chain model with a Beddington-DeAngelis functional response, Chaos, Soliton Fractals 40 (2009) 2305-2316.
  • 8M. Zhao and L. Zhang, Permanence and chaos in a host-parasitoid model with prolonged diapause for the host, Commun. Nonlinear Sci. Numer. Simulat. 14 (2009) 4197-4203.
  • 9S. Gakkhar, K. Negi and S. K. Sahani, Effects of seasonal growth on a ratio-dependent delayed prey-predator system, CommuTe. Nonlinear Sci. Numer. Simulat. 14 (2009) 850-862.
  • 10H. Nie and J. Wu, Coexistence of an unstirred chemostat model with Beddington-DeAngelis functional response and inhibitor, Nonlinear Anal. Real World Appl. 11(2010)3639-3652.

共引文献3

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部