期刊文献+

基于频繁项集挖掘算法的伴随车应用与实现 被引量:3

APPLICATION AND REALIZATION OF ESCORT VEHICLE BASED ON FIM ALGORITHM
下载PDF
导出
摘要 随着大数据技术的发展和交通数据量迅速膨胀的挑战,对海量交通数据进行伴随车挖掘已然成为研究热点。提出一种基于Spark计算框架的频繁项集挖掘算法应用于伴随车挖掘模块当中,对海量的卡口交通数据进行Hadoop分布式文件存储(HDFS),并将伴随车挖掘结果可视化地展示在集成系统当中。以实际项目为依托,从而验证该伴随车模块的实现具有实际意义,并可为交通管理者提供科学的辅助决策。 With the development of big data technology and the challenge of the rapid expansion of traffic data, escort vehicle data mining to the massive traffic data has become a hot research area. In this paper, a frequent itemset mining (FIM) algorithm based on Spark computing framework is proposed, which is applied to the escort vehicle mining module, using HDFS to store the massive traffic bayonet data and visualization display the result of escort vehicle mining in the integrated system. Based on the actual project, this paper proves that the verification of the escort vehicle mining module has practical significance, and can provide scientific auxiliary decision for the traffic management.
出处 《计算机应用与软件》 2017年第4期60-64,共5页 Computer Applications and Software
基金 上海市科学技术委员会应用技术开发专项(2014-104)
关键词 HDFS Spark计算框架 频繁项集挖掘 伴随车 HDFS Spark computing framework FIM Escort vehicle
  • 相关文献

参考文献7

二级参考文献54

  • 1焦学磊,王新庄.基于矩阵的频繁项集发现算法[J].江汉大学学报(自然科学版),2007,35(1):43-46. 被引量:6
  • 2Agrawal R, Imielinski T, Swami A. Mining Association Rules Between Sets of Items in Large Databases[C]//Proc. of ACMSIGMOD Int'l Conf. on Management of Data. Washington D. C., USA: [s. n.], 1993.
  • 3Han Jiawei, Pei Jian, Yin Yiwei. Mining Frequent Patterns Without Candidate Generation[C]//Proc. of the 2000 ACM-SIGMOD Int'l Conf. on Management of Data. Dallas, TX, USA: [s. n.], 2000.
  • 4Wu Fan. A New Approach to Mine Frequent Patterns Using Item-transformation Methods[J]. Information Systems, 2007, 32(7): 1056-1072.
  • 5Agrawal R, Imielinski T, Swami A. Mining Assocation Rules Between Sets of Items in Large Databases[C]//Proc. of ACMSIGMOD Int'l Conf. on Management of Data. Washington D. C. USA: [s. n. ],1993.
  • 6Han Jiawei, Pei Jian, Yin Yiwei. Mining Frequent Patterns Without Candidate Generation[ C]//Proc. of the 2000 ACM - SIGMOD Int' l Conf. on Management of Data. Dallas, TX, USA:[s. n] ,2000.
  • 7Wu Fan. A New Approach to Mine Frequent Patterns Using Item - transformation Methods [ J ]. Information Systems, 2007, 32(7) : 1056 - 1072.
  • 8王柏盛,刘寒冰,靳书和,马丽艳.基于矩阵的关联规则挖掘算法[J].微计算机信息,2007,23(05X):144-145. 被引量:18
  • 9Agrawal R, Imielinski T, Swami A. In Mining association rules be- tween sets of times in large databases [ C ]//ACM SIGMOD Conference on Management of Data, ACM Order Deparment : 1993:207 - 216.
  • 10Agrawal R, Shafer JC. ParaUel mining of association rules [ J ]. IEEE Transactions on Knowledge and Data Engineering, 1996, 8 (6) :962 - 969.

共引文献41

同被引文献30

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部