期刊文献+

基于Kent混沌测量矩阵的压缩感知图像重构算法 被引量:5

COMPRESSED SENSING IMAGE RECONSTRUCTION ALGORITHM BASED ON KENT CHAOTIC MEASUREMENT MATRIX
下载PDF
导出
摘要 图像重构是图像数字化和恢复高质量图像信号的关键技术,使用压缩感知理论进行图像重构的意义在于显著减少采样次数,降低系统资源的消耗。测量矩阵的构造是压缩感知的重要研究内容之一。提出一种基于Kent混沌测量矩阵的压缩感知图像重构算法,将Kent混沌序列作为测量矩阵,采用离散小波变换的稀疏化方法,在小波域对原始图像信号进行测量。最后采用正交匹配追踪方法恢复原始图像。仿真实验中,对比高斯随机测量矩阵和Logistic混沌测量矩阵,对不同的图像进行重构。实验结果证明,基于Kent混沌测量矩阵的重构算法能够恢复原始图像,重构性能优于高斯随机观测矩阵和Logistic混沌测量矩阵,同时克服了随机测量矩阵硬件难以实现的缺陷。 Image reconstruction is the key technique of image digitisation and restoration of high-quality image signal. The significance of using compressed sensing theory to reconstruct the image is to reduce the sampling times and decrease the consumption of system resources. The structure of measurement matrix is one of the important research contents of compressed sensing. This paper presents a compressed sensing image reconstruction algorithm based on Kent chaotic measurement matrix. We use Kent chaotic sequence as the measurement matrix and adopt sparse method for discrete wavelet transform to measure the original image signal in wavelet domain. Finally, we use the orthogonal matching pursuit method to recover the original image. In simulation experiments, Gaussian random measurement matrix and Logistic chaotic measurement matrix are compared in the reconstruction of different images. Experimental results show that the reconstruction algorithm based on Kent chaotic measurement matrix can reconstruct the original image, its reconstruction performance is superior to Gaussian random measurement matrix and Logistic chaotic measurement matrix, and the defects which random measurement matrix hardware cannot realize are overcome.
出处 《计算机应用与软件》 2017年第4期213-220,共8页 Computer Applications and Software
基金 国家自然科学基金项目(61305014) 上海市教育委员会重点创新项目(14ZZ156)
关键词 混沌矩阵 压缩感知 图像重构 Kent矩阵 Chaotic matrix Compressed sensing Image reconstruction Kent matrix
  • 相关文献

参考文献7

二级参考文献97

  • 1单梁,强浩,李军,王执铨.基于Tent映射的混沌优化算法[J].控制与决策,2005,20(2):179-182. 被引量:199
  • 2Candes E J, Romberg T, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theme., 2006, 52(2): 489-509.
  • 3Candes E J, Romberg J, and Tao T. Stable signal recovery from incomplete and inaccurate measurements[J].Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.
  • 4Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 5Figueiredo M A T, Nowak R D, and Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE Journal Selected Topics in Signal Processing, 2007, 1(4): 586-597.
  • 6Do T T, Gan L, Nguyen N. et al.. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]. Asilomar Conference on Signals, Systems and Computer, Pacific Grove. CA. 2008. 10:581 587.
  • 7Candes E J and Romberg J. Robust signal recovery from incomplete observations[C]. IEEE International Conference on Image Processing, Atlanta, GA, USA, 2006:1281 1284.
  • 8Do T, Gan L, Nguyen N, et al.. Fast and efficient compressive sensing using structurally random matrices[J]. IEEE Transactions on Signal Processing, 2012, 60(1): 139-154.
  • 9Gan L, Do T and Tran T D. Fast compressive imaging using scrambled block Hadamard ensemble[C]. Processings of the European Signal Processing Conference, Lausannne, Switzerland, August 2008: 1-5.
  • 10Candes E J and Wakin M. An introduction to compressivesampling[J]. IEEE Signal Processing Magazine, 2008, 25(2) 21-30.

共引文献54

同被引文献39

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部