期刊文献+

基于用户行为特征的动态权重混合推荐算法 被引量:8

A DYNAMIC-WEIGHTED HYBRID RECOMMENDATION ALGORITHM BASED ON USER BEHAVIOR CHARACTERISTICS
下载PDF
导出
摘要 推荐系统可以为不同的用户定制个性化的网络服务,如何提供准确的推荐则成为其最大难点。针对传统推荐算法的稀疏性问题,提出基于用户行为特征的动态权重混合推荐算法。通过对数据集中的数据进行预处理,计算出不同用户对于不同物品的个性化行为特征指数,并将其引入相似度的计算中。依据用户评分数据稀疏性的差异计算出动态权重,并依此将基于用户内容的推荐和协同过滤推荐进行动态混合。实验结果表明,该算法在稀疏数据集中能有效降低推荐误差,提高推荐精度。 A recommendation system can personalize website service for different users, and how to provide accurate recommendations has become the biggest difficulty. Aiming at the sparsity problem of traditional recommendation algorithm, dynamic-weighted hybrid recommendation algorithm based on user behavior characteristics is proposed. Through the data preprocessing in dataset, the personalized behavior characteristic index of different users for different items is calculated and introduced into the similarity calculation. The dynamic weight is calculated according to the difference of the user’s rate data sparseness, and the user’s content recommendation and collaborative filtering recommendation are dynamically mixed. Experimental results show that the proposed algorithm can reduce the recommendation error effectively and improve the recommendation accuracy in the sparse data set.
出处 《计算机应用与软件》 2017年第4期316-321,共6页 Computer Applications and Software
关键词 行为特征 动态权重 混合推荐算法 User behavior characteristics Dynamic-weighted Hybrid recommendation algorithm
  • 相关文献

参考文献2

二级参考文献19

  • 1彭玉,程小平.基于属性相似性的Item-based协同过滤算法[J].计算机工程与应用,2007,43(14):144-147. 被引量:21
  • 2Zhou Tao,Ren Jie,Medo M,et al.Bipartite network projection and personal recommendation[J].Physical Review E,2007,76(4):6116-6123.
  • 3Zhou Tao,Jiang Luoluo,Su Riqi,et al.Effect of initial configuration on network-based recommendation[J].Europhys Lett,2008,81(5):8004-8008.
  • 4Pan Xin,Deng Guishi,Liu Jianguo.Weighted bipartite network and personalized recommendation[J].Physics Procedia,2010,3(5):1867-1876.
  • 5Liu Jianguo,Zhou Tao,Wang Binghong,et al.Effects of user tastes on personalized recommendation[J].International Journal of Modern Physics C,2009,20(12):1925-1932.
  • 6Scott A G,Bernardo A H.Usage patterns of collaborative tagging systems[J].Journal of Information Science,2006,32(2):198-208.
  • 7Zhang Zike,Liu Chuang,Zhang Yichen,et al.Solving the cold-start problem in recommender systems with social tags[J].Europhysics Letters,2010,92(2):8002-8008.
  • 8Melville P,Mooney R J,Nagarajan R.Content-boosted collaborative filtering for improved recommendations[C]//Proceedings of the 18th National Conference on Artificial Intelligence,Edmonton,2002:187-192.
  • 9Yoshii K,Goto M,Komatani K,et al.An efficient hybrid music recommender system using an incrementally trainable probabilistic generative model[J].IEEE Transactions on Audio Speech and Language Processing,2008,16(2):435-447.
  • 10Pazzani M J,Billsus D.Content-based recommendation systems[M]//The Adaptive Web:Methods and Strategies of Web Personalization.Berlin,Heidelberg:Springer-Verlag,2007:325-341.

共引文献26

同被引文献77

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部