期刊文献+

一种自适应的机器人曲面切削力控制算法 被引量:3

An Adaptive Force Control Algorithm for Robotic Surface Machining
下载PDF
导出
摘要 为提高机器人复杂曲面的切削加工质量,对机器人切削状态进行分析,提出了一种自适应的曲面切削力控制方法.首先探讨了机器人刚度和进给速度对切削质量的影响,建立了冲击和稳态切削状态的动力学模型;然后根据切削形变与进给速度的关系,建立了基于模糊PID的力控制模型;最后通过传感器的力反馈计算出切削形变,实时调整进给速度实现切削质量控制.将文中方法与曲面切削开环控制和PID控制方法进行对比,结果显示,与开环控制和PID控制对比,基于模糊PID的曲面切削力控制方法能有效减小切削过程中刚冲击力幅度和稳定切削的力波动,实现有效的曲面切削力控制. In order to improve the quality of robotic surface machining, deferent robotic machining states are ana-lyzed ,and an adaptive force control scheme? is presented. In the investigation, first, the effects of robot stiffness and feed rate on the machining quality are explored, and a machining kinetic model including both impact part and stable grinding part is constructed. Next, a fuzzy PID-based force control model is established according to the rela-tionship between the machining deformation and the feed rate. Then, the machining deformation is calculated ac-cording the force feedback, and the machining quality is controlled by adjusting the feed rate in real time. Finally, the proposed method, the open-loop method and the PID control method are compared, and the results show that the fuzzy PID-based surface force control method helps implement high-precision surface machining force control be-cause it can effectively decrease the amplitude of rigid force fluctuation and impact force value.
作者 陈首彦 张铁
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第2期59-65,共7页 Journal of South China University of Technology(Natural Science Edition)
基金 国家科技重大专项项目(20152ZX04005006) 广东省科技计划项目(2014B090921004 2015B010918002) 广州市产学研协同创新重大专项项目(201505031617224)~~
关键词 曲面切削 切削质量 进给速度 机器人形变 模糊PID力控制模型 surface machining machining quality feedrate roboticde formation fuzzy PID-based force control model
  • 相关文献

参考文献5

二级参考文献32

  • 1吴南星,胡如夫,孙庆鸿.数控车床丝杠进给系统刚度对定位精度的影响[J].中国工程科学,2004,6(9):46-49. 被引量:31
  • 2Pawlak Z. Rough sets [ J ]. International Journal of Com- puter and Information Sciences, 1982,11 ( 5 ) : 341- 356.
  • 3Zadeh L. Fuzzy sets [ J ]. Information and Control, 1965,8 (3) :338-353.
  • 4Polkowski L, Skowron A, Zytkow J. Rough foundations for rough sets [ M]//Lin T Y,Wildberger A M. Soft compu-ting: rough sets, fuzzy logic, neural networks, uncertainty management, and knowledge discovery. San Diego : Society of Computer Simulation, 1995 : 142-149.
  • 5Lin T Y. Neighborhood systems and approximation in rela- tional databases and knowledge bases [ C ] JJ Proceedings of the Fourth International Symposium on Methodologies of Intelligent Systems ( Poster Session ). Charlotte : Oak Ridge National Laboratory, 1989:75-86.
  • 6Greco Salvator, Matarazzo Benedetto, Slowinski Roman. Rough sets theory for muhicriteria decision analysis [ J]. European Journal of Operational Research ,2001,129 (1) : 1-47.
  • 7Dubois D, Prade H. Rough fuzzy sets and fuzzy rough sets [ J]. International Journal of General Systems, 1990, 17 (2/3) :191-209.
  • 8Wu C J. Guaranteed accurate fuzzy controllers for monotone functions [ J ]. Fuzzy Sets and Systems, 1997, 92 ( 1 ) : 71-82.
  • 9Chou Te-shun, Lee Edward T. Fuzzy monotone functions and applications [ C ] JJProceedings of IEEE International Conference on Fuzzy Systems, IEEE WoAd Congress on Computational Intelligence. Anchorage: IEEE, 1998 : 829- 834.
  • 10Van Broekhoven Ester, De Baets Bernard. Monotone Mam- dani-Assilian models under mean of maxima defuzzifica- tion [ J]. Fuzzy Sets and Systems, 2008,159 (21):2819- 2844.

共引文献46

同被引文献20

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部