摘要
针对建筑保温材料性能表征十分复杂、困难的情况,利用人工神经网络BP算法,建立了复合保温材料性能预测模型,模型由3层神经元组成,分别为输入层、隐含层和输出层。以炉渣复合材料性能与成分的关系为研究对象,采取108组实验数据对神经网络进行8 000次训练,神经网络输出值的平方平均误差为0.000 12。然后,选用18组实验数据对训练成熟的试验神经网络模型进行检测,并把检测样本的神经网络输出值和试验值进行比较。结果表明:所建立的网络能反映炉渣复合保温材料与材料性能之间的关系,为实验设计提供了新的思想,节省了时间和劳动力。
Faced with complexity and difficulty of performance of building thermal insulation materials,the composite insulation performance prediction model,which consisted of three neurons,including input layer,hidden layer and output layer,was made by BP Algorithm of artificial neural network. The relationship between the performance and composition of the slag composite was studied and 108 groups of experimental data were taken to train the neural network for 8 000 times,which finally drewa conclusion that the average error of the output value of the neural network was 0. 000 12. Then,18 groups of experimental data were used to test the neural network model,and the output values and test values of the test samples were compared. The results showthat the network can reflect the relationship between the thermal insulation material and the material properties,which provides a newidea for the experimental design,and saves time and labor.
出处
《建筑节能》
CAS
2017年第4期52-55,共4页
BUILDING ENERGY EFFICIENCY
基金
江苏省自然科学基金资助项目(Bk2009644)
江苏省"六大人才高峰"资助项目(JZ017)
关键词
BP神经网络
实验方法
复合材料
材料性能
BP neural network algorithm
experimental method
composite material
material performance