期刊文献+

基于CL的无线mesh网络信道分配方案 被引量:1

A Channel Assignment Schema Based on CL in WMN
下载PDF
导出
摘要 无线网状网络(WMN)作为一种新技术,为生活在全球不同地区的客户提供了低成本的宽带网络.针对WMN中信道分配和拓扑保持解决方案的问题,提出基于协同式学习(CL)的信道分配和拓扑保持方案.该方案将学习自动机部署在最近的MR中,在环境学习的过程中以协同的方式互相分享信息和传送数据,并定义信道利用因子,在任何阶段发生冲突时用于信道选择.此外,还基于吞吐量和数据传送率两项性能评估指标对IAHA-CA、LAMR和提出的方案进行评估比较,实验结果表明,提出的方案优于另外两种方案. Wireless mesh networks(WMN)as a new technology has provided low-cost broadband network for the life of customers in different parts of the world.Aiming at solving the problem of channel assignment and topology preserving solution for WMN,the schema of channel assignment and topology preserving based on collaborative learning(CL)is proposed.The schema will learn the deployment of automaton in recent MR,in a cooperative way to share information and data transfer in the process of learning environment,and define the channel utilization factor to select channel for the conflict at any stage.IAHA-CA,LAMR and the algorithm proposed in this paper are evaluated and compared based on two performance evaluation indicators of the throughput and data transfer rate.The experimental results show that the proposed schema is better than the other two.
出处 《湘潭大学自然科学学报》 CAS 北大核心 2017年第1期99-102,共4页 Natural Science Journal of Xiangtan University
基金 国家自然科学基金项目(61540066) 河南省教育厅科学技术研究重点项目(13A520221 14A520045) 贵州省重大基础研究项目(黔科合JZ字[2014]2001号)
关键词 无线网状网络 协同式学习 吞吐量 数据传送率 wireless mesh networks collaborative learning throughput data transfer rate
  • 相关文献

参考文献7

二级参考文献75

  • 1Gholipou A, Kehtarnavuz N, Briggs R, Devous M, Gopinath K. Brain functional localization: a survey of image registration techniques. IEEE Transactions on Medical Imaging, 2007, 26(4): 427-451.
  • 2Cachier P, Bardinet E, Dormont D, Pennec X, Ayache N. Iconic feature based nonrigid registration: the PASHA algorithm. Computer Vision and Image Understanding, 2003, 89(2-3): 272-298.
  • 3Shen D G, Davatzikos C. HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Transactions on Medical Imaging, 2002, 21(11): 1421-1439.
  • 4Holden M. A review of geometric transformations for nonrigid body registration. IEEE Transactions on Medical Imaging, 2008, 27(1): 111-128.
  • 5Noblet V, Heinrich C, Heitz F, Armspach J P. Retrospective evaluation of a topology preserving non-rigid registration method. Medical Image Analysis, 2006, 10(3): 366-384.
  • 6Musse O, Heitz F, Armspach J P. Topology preserving deformable image matching using constrained hierarchical parametric models. IEEE Transactions on Image Processing, 2001, 10(7): 1081-1093.
  • 7Noblet V, Heinrich C, Heitz F, Armspach J P. 3-D deformable image registration: a topology preservation scheme based on hierarchical deformation models and interval analysis optimization. IEEE Transactions on Image Processing, 2005, 14(5): 553-566.
  • 8Leow A D, Yanovsky I, Chiang M C, Lee A D, Klunder A D, Lu A. Statistical properties of jacobian maps and the realization of unbiased large-deformation nonlinear image registration. IEEE Transactions on Medical Imaging, 2007, 26(6): 822-832.
  • 9Thirion J P. Image matching as a diffusion process: an analogy with Maxwell's demons. Medical Image Analysis, 1998, 2(3): 243--260.
  • 10Karacah B, Davatzikos C. Estimating topology preserving and smooth displacement fields. IEEE Transactions on Medical Imaging, 2004, 23(7): 868-880.

共引文献42

同被引文献9

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部