摘要
无线网状网络(WMN)作为一种新技术,为生活在全球不同地区的客户提供了低成本的宽带网络.针对WMN中信道分配和拓扑保持解决方案的问题,提出基于协同式学习(CL)的信道分配和拓扑保持方案.该方案将学习自动机部署在最近的MR中,在环境学习的过程中以协同的方式互相分享信息和传送数据,并定义信道利用因子,在任何阶段发生冲突时用于信道选择.此外,还基于吞吐量和数据传送率两项性能评估指标对IAHA-CA、LAMR和提出的方案进行评估比较,实验结果表明,提出的方案优于另外两种方案.
Wireless mesh networks(WMN)as a new technology has provided low-cost broadband network for the life of customers in different parts of the world.Aiming at solving the problem of channel assignment and topology preserving solution for WMN,the schema of channel assignment and topology preserving based on collaborative learning(CL)is proposed.The schema will learn the deployment of automaton in recent MR,in a cooperative way to share information and data transfer in the process of learning environment,and define the channel utilization factor to select channel for the conflict at any stage.IAHA-CA,LAMR and the algorithm proposed in this paper are evaluated and compared based on two performance evaluation indicators of the throughput and data transfer rate.The experimental results show that the proposed schema is better than the other two.
出处
《湘潭大学自然科学学报》
CAS
北大核心
2017年第1期99-102,共4页
Natural Science Journal of Xiangtan University
基金
国家自然科学基金项目(61540066)
河南省教育厅科学技术研究重点项目(13A520221
14A520045)
贵州省重大基础研究项目(黔科合JZ字[2014]2001号)
关键词
无线网状网络
协同式学习
吞吐量
数据传送率
wireless mesh networks
collaborative learning
throughput
data transfer rate