期刊文献+

一类时滞非线性系统的自适应控制器设计

Adaptive Controller Design for a Class of Time-delay Nonlinear Systems
下载PDF
导出
摘要 针对一类带有扰动的未知时滞非线性系统,将未知的非线性函数表示成新的表达式,利用反步方法设计了一种鲁棒自适应控制器。首先构造一种新的LyapunovKrasovskii泛函,有效补偿了未知时滞的不确定性,使得控制器的设计不存在未知时滞项。然后引入一种合适的偶函数,解决了控制器的奇异性问题。最后利用Lyapunov直接方法,证明了设计的控制器能保证闭环系统全局一致最终有界。通过仿真实例验证了所设计的自适应控制器的有效性。 By using the backstepping design method and turning the unknown nonlinear function into a new expression, a robust adaptive controller was proposed for a class of unknown time-delay nonlinear systems with disturbance. Firstly, a new Lyapunov-Krasovskii functional was used to compensate the uncertainty of unknown time-delay. And there is no unknown time-delay term in the controller design. Then an appropriate even function was introduced to avoid the controller singularity problems. Finally, it was proved that the global uniform ultimate boundedness of all the signals in the closed-loop systems was guaranteed by the Lyapunov direct method. The effectiveness of the designed controller was illustrated by a simulation case.
作者 雷阳
出处 《控制工程》 CSCD 北大核心 2017年第4期742-746,共5页 Control Engineering of China
基金 国家自然科学基金资助项目(60974039) 山东省自然科学基金资助项目(ZR2011FM002)
关键词 非线性时滞系统 扰动 反步设计 鲁棒自适应控制 Time-delay nonlinear system disturbance backstepping design robust adaptive control
  • 相关文献

参考文献3

二级参考文献26

  • 1朱家强,朱纪洪,郭锁凤,孙增圻.基于神经网络的鲁棒自适应逆飞行控制[J].控制理论与应用,2005,22(2):182-188. 被引量:21
  • 2瓦普尼克.统计学习理论的本质[M].张学工,译.北京:清华大学出版社,2000.
  • 3Isidori A. Nonlinear control systems [ M ]. New York: Springer- Verlag, 1995.
  • 4Giulietti F, Pollini L, Innocenti M. Autonomous formation flight [ J ]. IEEE Control Systems Magazine, 2000, 20 (6) : 34-44.
  • 5Harmon F G, Frank A A, Joshi S S. The control of a parallel hy- brid-electric propulsion system for a small unmanned aerial vehicle using a CMAC neural network[ J]. Neural Networks, 2005, 18 (5) :772-780.
  • 6Shin D, Kim Y. Nonlinear discrete-time reconflgurable flight con- trol law using neural networks [ J ]. IEEE Transactions on Control Systems Technology. 2006, 14(3 ) :23-35.
  • 7Vapnik V N. The nature of statistical learning theory [ M ]. New York : Springer-Verlag, 1995.
  • 8Suykens J A K, Vandewalle J. Least Squares Support Vector Ma- chine Classifiers [ J ]. Neural Processing Letters, 1999, 9 ( 3 ) : 293 -300.
  • 9Hui W, Dao ying P, You xian S. Online SVM regression algorithm based adaptive inverse control [ C ]. Hefei: International Confer- ence on Intelligent Computing, 2005:1952-1961.
  • 10Shin J, Kim H J, Park S, et al. Model predictive flight control u- sing adaptive support vector regression [ J ]. Neurecomputing, 2010, 4(73) :1031-1037.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部