摘要
考虑到充电站投资主体和充电用户两种不同角色所追求的利益互异会影响充电站规划决策,发展了一种兼顾投资主体投资成本和充电用户满意度的集中型充电站双层优化布局模型。根据各类电动汽车(EVs)的行为特性建立了电动汽车充电功率需求模型。以企业投资成本和用户满意度分别作为双层规划模型的上层和下层目标函数,并考虑企业投资预算约束、电网约束、充电站容量约束和充电用户需求约束,综合反映了不同角色间的耦合决策作用。双层规划问题属于强NP-hard问题,采用量子遗传算法求解上层规划模型,采用粒子群算法求解下层规划模型,并输出最终充电站布局方案。结果表明,综合考虑投资成本和用户满意度的集中型充电站方案能合理兼顾投资主体和用户的各自利益,实现投资成本和用户满意度的有效折衷。
The planning decision is affected by centralized charging stations investors and charging users who play different roles and pursue different benefits. Therefore,we develop a bi-level optimal planning model considering investment cost of investors and user satisfaction. The charging power demand model of electric vehicles (EVs) is established based on the behavior characteristics of different EVs. The objective function of the upper level and the lower level identifies the investment cost and user satisfaction with the investment budget, power grid, charging stations capacity and user de- mand as constraints. This model reflects the effect of coupled decision among different roles. The Bi-level programming belongs to the strong NP-hard issues. Furthermore, we utilize a quantum genetic algorithm and particle swarm optimization to solve the bi-level model and outputs the planning of charging station. The results show that the planning of charging station considering investment cost and user satisfaction can give overall consideration on each benefit for investors and users, and achieve an effective compromise between investment cost and user satisfaction.
出处
《高电压技术》
EI
CAS
CSCD
北大核心
2017年第4期1256-1262,共7页
High Voltage Engineering
基金
国家自然科学基金(51377111)~~
关键词
集中型充电站
用户满意度
耦合决策
双层规划问题
量子遗传算法
粒子群算法
centralized charging stations
user satisfaction
coupled decision
bi-level programming problem
quantum genetic algorithm
particle swarm optimization