期刊文献+

超声冲击强化对TC4钛合金拉压疲劳性能的影响 被引量:8

Effects of Ultrasonic Impact Modification on Tension-compression Fatigue Behavior of TC4
下载PDF
导出
摘要 静荷载25 N、振幅30μm、冲击数36 000次/mm2下对TC4钛合金去应力退火及固溶时效两种状态进行超声表面冲击强化处理,研究其对TC4拉压疲劳性能的影响。对处理后的微观组织、硬度、强塑性变形(SPD)层、残余应力、疲劳性能和断裂特征进行分析。结果表明:处理后在TC4表面均获得约40μm深的强塑性变形层、表面硬度及残余压应力均被提高、表面粗糙度有较好的维持、两种状态的108周次的疲劳强度分别提升7.0%和10.7%;10~6周次前裂纹主要由表面萌生,10~6周次后裂纹源核心表现为SPD层与核心之间的变形α相,其形状狭长且平行于试件边缘。建立经典材料力学模型对其轴向应力进行分析,有助于理解内部裂纹源。 The effect of ultrasonic nanocrystal surface modification (UNSM) on the tension-compression fatigue behavior of Ti-6A1-4V (stress-relief annealed or solid solution-aging treated) was studied. UNSM is with a static load of 25 N, vibration amplitude of 30 μm and 36 000 strikes per unit. The microstructure, hardness, severe plastic deformation (SPD) layer, residual stress, fatigue property and fracture mechanism of the alloy after UNSM treatment were analized. The results show that UNSM produces about 40 Ixm SPD layers on both the two groups of specimens. UNSM increases the hardness and the compressive residual stress. UNSM helps to maintain a good surface roughness. The 10^8 cycles fatigue strength of the two group samples are improved by 7% and 11.7%, respectively. After UNSM, fatigue cracks mainly initiate from the surface of specimen before the fatigue life of 10^6 cycles, while they appear at the deformed a-phases at the zone between the SPD layer and the core after the fatigue life of 10^6 cycles. The shape of the deformed a-phases is long and narrow because of the ultrasonic impacts on the surface, and it is parallel to the edge of specimens. The analysis of the axial normal stress is discussed based on a classical model, which helps to understand the initiation of interior cracks.
作者 曹小建 片英植 金江 许罗鹏 王宠 王清远 CAO Xiao-jian PYUN Young-shik JIN Jiang XU Luo-peng WANG Chong WANG Qing-yuan(College of Civil Engineering, Nantong University, Nantong 226019, Jiangsu School of Aeronautics & Astronautics, Sichuan University, Chengdu 610065 Department of Mechanical Engineering, Sun Moon University, Asan 336-708, Korean Department of Physics, Civil Aviation Flight University of China, Guanghan 618307, Sichuan)
出处 《中国表面工程》 EI CAS CSCD 北大核心 2017年第2期48-55,共8页 China Surface Engineering
基金 国家自然科学基金(11327801 11502152) 江苏省自然科学基金(BK20160416) 中国博士后科学基金(2104M552355)~~
关键词 超声冲击 疲劳 裂纹 钛合金 ultrasonic impact fatigue crack titanium alloy
  • 相关文献

同被引文献47

引证文献8

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部