2B. Cabral and L. C. Leedom. Imaging vector fields using line integral convolution. In Proceedings of ACM SIGGRAPH ' 09, pages 263-270, 2009. 5.
3W: Cai and P:A. Heng. Principal stream surfaces. In IEEE Visualization ' 10, pages 75-80,2010.
4M. W. Hirsch. Differential Topology, 6th Ed.Berlin, Springer, 1997.
5S. Lang. Differential and Riemannian Manifolds,3rd Ed. New York, Springer, 1995.
6A. Sundquist. Dynamic line integral convolution for visualizing stream-line evolution. IEEE Transactions on Visualization and Com- puter Graphics, 9(8):273-282, 2003.
7J. Grant, G. Erlebacher, and J. J. O' Brien.Case study: visualization of thermoclines in the ocean using Lagrangian-Eulerian timesur- faces. In IEEE Visualization '02, pages 529-532, 2002.
8B. Jobard, G. Erlebacher, and M. Hussaini.Lagrangian-Eulerian advection for unsteady flow visualization. IEEE Transactions on Vi- sualization and Computer Graphics, 8(3):211-222,2002.
9R. Blake and S:H. Lee. Temporal structure in the input to vision can promote spatial grouping. In Biologically Motivated Computer Vision 2000, pages 635-653, 2000.
10A. Sundquist. Dynamic line integral convolution for visualizing stream-line evolution. IEEE Transactions on Visualization and Com- puter Graphics, 9(8):273-282, 2003.