期刊文献+

等离子体医学及其在肿瘤治疗中的应用 被引量:9

Plasma Medicine and The Application in Tumor Therapy
下载PDF
导出
摘要 大气压冷等离子体是近年来学术界兴起的新研究领域,由于其在大气压下产生,气体温度低、粒子活性高,在众多领域尤其是生物医学方面的应用引起了人们广泛的关注.等离子体医学是一个革新的、新兴的交叉学科研究领域,结合了等离子体物理学、化学、生命科学和临床医学等.本文首先介绍了大气压冷等离子体的产生及其粒子成分,与液体和生物组织的相互作用,并介绍了大气压冷等离子体在生物医学领域的一些主要应用,如杀菌消毒、凝血、牙科应用、伤口愈合及皮肤病治疗等方面.同时,重点介绍大气压冷等离子体在肿瘤治疗方面的研究进展.大气压冷等离子体可有效诱导肿瘤细胞死亡、抑制增殖及迁徙、诱导肿瘤细胞分化并抑制干细胞潜能,同时能提高化疗药物敏感性,在肿瘤治疗领域具有很好的应用前景. With the technology development of cold atmospheric plasma(CAP), CAP draws more and more attentions to the biological application due to the low gas temperature and high activity of reactive species produced by CAP. Plasma medicine was also established as an innovative interdisciplinary, combining with the plasma physics, chemistry, life sciences and clinical medicine, etc. Here, we gave a brief introduction about CAP,its generation and composition, the interaction with liquid and tissues, and some of the major applications in biomedical field, such as sterilization, blood coagulation, wound healing, skin disease and dental treatment. In addition, we focused on the application of CAP in cancer treatment. CAP can effectively induce tumor cell death,inhibit cell proliferation and migration, induce differentiation of tumor cells and suppress the potential of stem cells, and can increase the sensitivity to chemotherapy. These beneficial effects shows a promising prospects for CAP application in tumor therapy.
出处 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2017年第4期279-292,共14页 Progress In Biochemistry and Biophysics
基金 国家自然科学基金(51307135,51677147)资助项目~~
关键词 大气压冷等离子体 活性粒子 等离子体医学 生物医学应用 肿瘤治疗 cold atmospheric plasma(CAP) reactive species plasma medicine biological application tumor therapy
  • 相关文献

参考文献4

二级参考文献293

  • 1邵涛,孙广生,严萍,彭燕昌,张适昌.纳秒脉冲气体放电机理研究现状[J].高电压技术,2004,30(7):40-42. 被引量:20
  • 2Kong M G, Kroesen G, Morrill G, et al. Plasma medicine: an introductory review[J]. New Journal of Physics, 2009, 11(11): 115012.
  • 3Foster J, Sommers B S, Gucker S N, et al. Perspectives on the interac- tion of plasmas with liquid water for water purification[J]. IEEE Transactions on Plasma Science, 2012, 40(5): 1311-1323.
  • 4Mariotti D, Patel J, Svrcek V, et al. Plasma-liquid interactions at at- mospheric pressure for nanomaterials synthesis and surface engineering[J]. Plasma Processes and Polymers, 2012, 9(11): 1074-1085.
  • 5Babaeva N Y, Kushner M J. Reactive fluxes delivered by dielectric barrier discharge filaments to slightly wounded skin[J]. Journal of Physics D: Applied Physics, 2013, 46(2): 025401.
  • 6Samukawa S, Hori M, Rauf S, et al. The 2012 plasma roadmap[J]. Journal of Physics D: Applied Physics, 2012, 45(25): 253001.
  • 7Chen C, Liu D X, Liu Z C, et al. A model of plasma-biofilm and plasma-tissue interactions at ambient pressure[J]. Plasma Chemistry and Plasma Processing, 2014, 34(3): 403-441.
  • 8Liu D X, Iza F, Wang X H, et al. He+O2+H2O plasmas as a source of reactive oxygen species[J]. Applied Physics Letters, 2011, 98(22): 221501.
  • 9Sskiyama Y, Graves D B, Chang H W, et al. Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive nan- tral species[J]. Journal of Physics D: Applied Physics, 2012, 45(42): 425201.
  • 10Bruggeman P, Leys C. Non-thermal plasmas in and in contact with liquids[J]. Journal of Physics D: Applied Physics, 2009, 42(5):053001.

共引文献229

同被引文献107

引证文献9

二级引证文献111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部