期刊文献+

逻辑动态系统的能观性及非奇异性

Observability and Nonsingularity of Logical Dynamical Systems
原文传递
导出
摘要 研究逻辑动态系统的能观性和非奇异性问题——分别为通过观测输出来得到初始状态和输入.针对这两类问题,分别定义两种不同的加权点对图,从而提供一个判别能观性和非奇异性的通用方法.为解决如何判别能观性,用相应的加权点对图来构造有限自动机,然后通过判别该自动机的完备性来判别能观性.另外,直接从对应于非奇异性的加权点对图出发构造出判别非奇异性的算法. This paper deals with two problems of observing states/inputs of logi- cal dynamical systems from outputs Observability and nonsingularity. Different weighted pair graphs are defined for observability and nonsingularity respectively, and are used to provide a unified method for determining them. For observability, the corresponding weighted pair graph is transformed to a finite automaton, and then observability is determined by testing the completeness of the automaton. Nonsingu- larity is determined directly from the corresponding weighted pair graph.
出处 《系统科学与数学》 CSCD 北大核心 2017年第2期328-337,共10页 Journal of Systems Science and Mathematical Sciences
基金 中国家自然科学基金(61573288 61603109) 黑龙江省自然科学基金(LC2016023)资助课题
关键词 逻辑动态系统 能观性 非奇异性 加权点对图 有限自动机 Logical dynamical systems, observability, nonsingularity, weighted pairgraph, finite automaton.
  • 相关文献

参考文献2

二级参考文献19

  • 1程代展.Semi-tensor product of matrices and its application to Morgen's problem[J].Science in China(Series F),2001,44(3):195-212. 被引量:53
  • 2[1]Huang L., Linear Algebra in Systems and Control Theory (in Chinese), Beijing: Science Press, 1984.
  • 3[2]Zhang, F., Matrix Theory, Basic Results and Techniques, New York: Springer-Verlag, 1999.
  • 4[3]Sokolnikoff, I. S., Tensor Analysis, Theory and Applications to Geometry and Mechanics of Continua, 2nd ed., New York: John Wiley & Sons, Inc., 1964.
  • 5[4]Boothby, W. M., An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd ed., New York: Academic Press, 1986.
  • 6[5]Willems, J. L., Stability Theory of Dynamical Systems, New York: John Wiley & Sons, Inc., 1970.
  • 7[6]Ooba, T., Funahashi, Y., Two conditions concerning common quadratic Lyapunov functions for linear systems, IEEE Trans. Automat. Contr., 1997, 42(5): 719—721.
  • 8[7]Ooba, T., Funahashi, Y., Stability robustness for linear state space models——a Lyapunov mapping approach, Sys. Contr. Lett, 1997, 29. 191—196.
  • 9[8]Cheng, D., Xue, W., Huang, J., On general Hamiltonian Systems, Proc. of ICARCV'98, Singapore, 1998, 185—189.
  • 10[9]Morgan, B. S., The synthesis of linear multivariable systems by state feedback, JACC, 1964, 64: 468—472.

共引文献152

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部