摘要
设{ξ_i}_(i=1)~∞是一列独立同分布在图Γ=(V(Γ),E(Γ))上取值的随机元,{a_i}_(i=1)~∞是一列固定的正整数.文章给出图值随机元序列的r-阶权函数、r-阶均值集与r-阶中心序等概念,将随机元序列的Fréchet样本均值的概念推广到更一般的情形,并且讨论了其基本性质,获得了关于图值随机元序列的广义强大数定理.
Let {ξi}∞i=1 be a sequence of independent identically distributed random elements taking values on a graph Г=(V(Г),E(Г)), {ai}∞i=1 be a sequence of fixed positive integers. In this paper, we first give the definitions of general rth weight function, r-th order mean set and r-th cental order of random elements. Then, we extend the Fr6chet mean of random elements to more generalized cases and discuss some basic properties of them. Fklrthermore, we prove a general strong law of large numbers for graph-valued random elements.
出处
《系统科学与数学》
CSCD
北大核心
2017年第2期601-608,共8页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金(11571142
31300125)
安徽省自然科学基金(1408085MA04)
安徽工业大学青年基金(QZ201418)资助课题
关键词
强大数定律
图
r-阶权函数
r-阶均值集
r-阶中心序.
Strong law of large numbers, graph, r-th order weight function, r-thcentral order mean set, r-th order sample mean set.