摘要
基于模型不确定性土压力问题,从滑动土体整体静力平衡方程出发,推导了一般情况下土压力泛函极值等周模型,包含了主动和被动极限状态两种情况。通过引入坐标变换对土压力变分问题进行求解,得到了滑裂面函数和沿滑裂面分布的法向应力函数,将土压力的求解进一步转化为以两个拉格朗日常数为未知量的函数的极值问题。在函数Ф随作用点位置系数ξ的变化曲线中,可以找到一段Ф=0的水平直线段,此直线段即为合理作用点位置系数范围,由此可以确定对应的土压力范围。通过算例对主动和被动两种情况予以说明。计算表明,作用点位置系数存在上下界限值,且分别对应土压力最大值和最小值及对应的滑裂面。土压力的大小和作用点位置依赖于挡墙变位模式,作用点位置系数上下限处所对应的土压力构成的数值范围,包含了各种挡墙变位模式下的土压力。通过本文提出的方法可以得到挡墙不同变位模式下,土压力大小和作用点位置的区间估计,以便为工程设计人员选用。
The earth pressure on rigid retaining wall considering model indeterminacy is focused. Based on the force equilibrium equations for sliding mass, the functional extreme-value isoperimetric model for earth pressure in the general case is derived, including active and passive limit state situations. Through the introduction of coordinate transformation, the slip surface function and normal stress function along the slip surface are obtained, the solution of earth pressure is further transcribed as the functional extreme-value problem by means of two Lagrange undetermined multipliers. In the changing curve of function Ф, the minimum varies along with the position factor of action point ξ, and one can find a section of horizontal line segment with Ф=0. This line segment corresponds to the position factor range of action point of resultant earth pressure, then the corresponding earth pressure scope can be determined, and the two cases of active and passive earth pressures are explained by the calculation example. The calculated results show that the position factor of action point has the upper and lower limit values, which correspond to the maximum and minimum values of earth pressure respectively, and corresponding slip surfaces can also be obtained. It is found that the magnitude of earth pressure and the position of action point depend on the modes of wall movement. The range of values of earth pressure corresponds to the upper and lower limits of the position factor of action point, and it comprises the earth pressures on the rigid retaining wall with all possible wall modes of movement. In a word, the interval estimation of the magnitude of earth pressure and the position of action point for different modes of wall movement can be obtained using the proposed method, so that it is convenient for the engineer to choose.
出处
《岩土工程学报》
EI
CAS
CSCD
北大核心
2017年第4期669-675,共7页
Chinese Journal of Geotechnical Engineering
基金
国家自然科学基金项目(51478065)
关键词
刚性挡土墙
土压力
模型不确定
极限平衡变分法
rigid retaining wall
earth pressure
model indeterminacy
variational limit equilibrium method