期刊文献+

基于粒子群支持向量机的高心墙堆石坝渗透系数反演 被引量:15

Back analysis of permeability coefficient of high core rockfill dam based on particle swarm optimization and support vector machine
下载PDF
导出
摘要 渗流场参数的获取是研究运行期高心墙堆石坝渗流特性的难点之一。针对糯扎渡高心墙堆石坝,利用饱和–非饱和渗流场有限元程序生成学习样本,借助支持向量机的高度非线性映射能力,建立了渗透系数与水头之间的映射关系。再以识别误差目标函数为适应值,采用粒子群优化算法反馈搜索以建立大坝渗透系数反演模型。以大坝最大横剖面典型渗压计测点为实测点,采用一维固结理论推导了大坝心墙超静孔隙水压力消散计算公式,并对心墙水头实测值进行修正。通过对运行期库水位稳定时段渗流场的反演得到大坝待反演分区的渗透系数,再利用水位上升期对应的渗流场进行验证。结果表明,渗透系数反演结果是合理的。 It is important to determine the seepage field parameters of high earth-rock-fill dam using the observed seepage data during operation period. For Nuozhadu core rockfill dam, the training samples are produced for saturated seepage field which is calculated by the finite element program. The nonlinear relationship between seepage parameters and water heads is established using the SVM mapping. Then taking the error objective function as the fitness value of particle swarm optimization(PSO), the seepage parameters should be identified by PSO. Based on the one-dimension consolidation theory, the dissipation formulae for the excess pore water pressure in the core wall are derived, and they are used to correct the measured seepage pressure values in the core wall. The recorded osmotic pressure curves of osmometers, which are distributed in the maximum section, are used for this back analysis. The permeability coefficients of the dam materials are retrieved using the corrected measured seepage pressure values under steady state of seepage condition, i.e., the water level remains unchanged. Meanwhile, the parameters are verified by the unstable saturated-unsaturated seepage field while the water lever rises. The results show that the permeability coefficients are reasonable.
出处 《岩土工程学报》 EI CAS CSCD 北大核心 2017年第4期727-734,共8页 Chinese Journal of Geotechnical Engineering
基金 国家自然科学基金项目(51379029)
关键词 高心墙堆石坝 支持向量机 粒子群优化 渗透系数反演 饱和–非饱和渗流 high core rockfill dam support vector machine particle swarm optimization permeability coefficient identification saturated-unsaturated seepage field
  • 相关文献

参考文献5

二级参考文献35

  • 1李守巨,刘迎曦,孙慧玲.基于蚁群算法的含水层参数识别方法[J].岩土力学,2005,26(7):1049-1052. 被引量:10
  • 2何光渝,郑书英.渗流力学问题中的数值反演解[J].应用力学学报,1997,14(1):113-117. 被引量:5
  • 3宋志宇,李俊杰.基于微粒群算法的大坝材料参数反分析研究[J].岩土力学,2007,28(5):991-994. 被引量:7
  • 4杨林德.岩土工程问题的反演理论和工程实践[M].北京:科学出版社,1999..
  • 5YEH WILLIAM W G. Review of parameter identification procedures in groundwater hydrology[J]. Water Resources Research, 1986, 22(2): 85- 108.
  • 6TSURUMI N, UTSUGIDA Y, KAWAHARA M. Parameter identification for steady-state groundwater flow[J]. Finite Elements in Analysis and Design, 1995, 20(4): 233-252.
  • 7ZIJLSTRA J, DANE J H. Identification of hydraulic parameters in layered soils based on a quasi-Newton method[J]. Journal of Hydrology, 1996, 181(1): 233- 250.
  • 8WONG F S. Slope reliability and response surface method[J]. Journal of Geotechnical Engineering, 1985, 111(1): 32-53.
  • 9VAPNIK V. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995: 36-43.
  • 10ANGELINE P J. Evolutionary optimization versus particle swarm optimization: philosophy and performance differences[C]//Proceedings of the 7th International Conference on Evolutionary Programming (EP'98). San Diego: Springer, 1998: 601-610.

共引文献181

同被引文献164

引证文献15

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部