期刊文献+

水热工艺条件对纳米Ni-Ti-O/泡沫镍复合电极电催化性能影响

Effect of hydrothermal process on electrocatalytsis performance of Nano Ni-Ti-O/Ni foam composite electrodes
下载PDF
导出
摘要 采用了水热合成法在泡沫镍支架表面制备了Ni-Ti-O纳米结构。通过扫描电镜(SEM)和循环伏安法研究了镍支架上Ni-Ti-O纳米结构的微观形貌和对甲醇的催化氧化性能。研究结果表明HCl浓度对纳米Ni-Ti-O的形成有重要影响。浓度低时,获得的纳米片量偏少,性能较差。如果浓度过高,会破坏Ni的整体结构也会导致性能下降。随温度的上升和保温时间的延长,电化学性能先升后降。在含5 mL钛酸丁酯、3 mLHCl和72 mLH_2O的水热体系中,80℃水热保温6 h后制备出来的样品具有最优的甲醇催化性能。 Ni-Ti-O nanostructure was fabricated on the surface of Ni foam by hydrothermal method. Scanning electron microscopy(SEM) and cyclic voltammetry (CV) ware used to in- vestigate the Ni-Ti-O nanostructure and the methanol catalytsis performance of electrodes. The resuhs show HC1 concentration has an important effect on the formation of nano Ni-Ti- O. When the concentration is low, the amount of nano Ni-Ti-O is less and the performance is worse. If the concentration is too high, it will damage the overall structure of Ni foam re- sulting to degradation of performance. With the increase of temperature and the prolonging ofholding time, the electrochemical performance firstly increases and then decreases. The sam-ples prepared with the solution system with 5 mLTBT,3 mLHC1 and 72 mLH2O at 80 ℃ for6 h has the best methanol catalytic performance.
出处 《石油化工应用》 CAS 2017年第4期122-126,共5页 Petrochemical Industry Application
基金 浙江省自然科学基金资助 项目编号:LY16E010004
关键词 泡沫镍 水热合成 微观形貌 Ni-Ti-O纳米结构 甲醇催化 Ni foam hydrothermal synthesis micro-structure Ni-Ti-O nanostructures me-thanol catalysis
  • 相关文献

参考文献3

二级参考文献74

  • 1彭程,程璇,张颖,陈羚,范钦柏.碳载铂纳米微粒修饰的玻碳电极对甲醇的电催化氧化[J].稀有金属材料与工程,2005,34(6):950-953. 被引量:8
  • 2刘世斌,刘洁,孙彦平,李一兵,段东红,张忠林.Mo_qRu_yX_z(X=S,Se,Te)纳米簇电催化还原氧的性能对比研究[J].无机化学学报,2006,22(6):1127-1132. 被引量:5
  • 3刘世斌,牛秀红,段东红,张忠林,郝晓刚,孙彦平.Pt掺杂对Mo-Ru-Se簇合物电催化氧还原性能的影响[J].无机化学学报,2007,23(4):683-687. 被引量:2
  • 4刘世斌,段东红,刘洁,张忠林,郝晓刚,孙彦平.过渡金属掺杂Ru-Se簇合物电催化剂氧还原性能的对比研究[J].无机化学学报,2007,23(5):802-806. 被引量:4
  • 5Cruickshank John, Scott Keith, The degree and effect of methanol crossover in the direct methanol fuel cell[J],J.Power Sources, 1998, 70, 40-47.
  • 6Ramya K, Dhathathreyan KS, Direct methanol fuel cells: determination of fuel crossover in a polymer electrolyte membrane[J], J. Electroanal Chem, 2003, 542, 109-115.
  • 7Maillard F, Martin M, Gloaguen F, et al. Oxygen electroreduction on carbon-supported platinum catalysts. Particle-size effect on the tolerance to methanol competition [J], Electrochem.Acta, 2002, 47, 3431-3440.
  • 8Rivera-Noriega R, Solorza-Feria O, Castillo-Hernandez N, et al. Oxygen reduction on RuxFey duster electrocatalyst in acid electrolyte[J], Int.J.Hydrog.Energy, 2002, 27,457-460.
  • 9Deryn chu, Jian Rongzhong, Novel electrocatalysts for direct methanol fuel cell[J], Solid State Ionics, 2002, 148, 591-599.
  • 10Antolini E, Salgado J.R.C, Gonzalez E.R, Carbon supported Pt75M25(M=Co, Ni) alloys as anode and cathode electrocatalysts for direct methanol fuel cells[J], J. Eleetroanal. Chem., 2005, 580,145-154.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部