期刊文献+

基于BP神经网络遗传算法的汽车塑件CAE优化分析 被引量:5

Optimization Analysis of Automobile Plastic Part CAE Based on BP Neural Network and Genetic Algorithm
下载PDF
导出
摘要 以汽车内饰中立柱本体注射成型为例,基于Moldflow中CAE分析基础上,对塑件注塑所需的成型工艺参数进行了仿真,并分析了塑件翘曲成因,给出了翘曲改善优化目标。结合注塑工艺规律,借助于Tugachi正交试验法、BP神经网络遗传算法、Matlab数值分析对塑件注射成型工艺参数协同进行优化,并对优化结果进行了CAE比对验证。结果表明:神经网络预测推荐的工艺参数能有效将翘曲结果控制在质量误差范围内,提出的优化设计方法能有效降低模具试模成本,改善塑件成型质量。 As an example by studying on the injection molding of the automotive interior column body, based on analysis of Moldflow CAE,the molding parameters required for injection molding products were simulated, and the causes of product warpage deviation were analyzed, which gave warpage optimization goal. The plastic injection molding process parameters were optimized with the help of the Tugachi orthogonal experiment method, BP neural network genetic algorithm and Matlab numerical analysis, and the optimization results were verified on CAE. The results show that the neural network prediction of the recommended parameters can effectively control the warpage results in quality error range. The proposed optimization design method can effectively reduce the mold cost and improve the molding quality of plastic parts.
出处 《现代塑料加工应用》 CAS 北大核心 2017年第2期55-59,共5页 Modern Plastics Processing and Applications
基金 广西壮族自治区高校科研项目(GKY1501)
关键词 塑件 神经网络 遗传算法 优化分析 plastic part neural network genetic algorithm optimization analysis
  • 相关文献

参考文献4

二级参考文献31

  • 1LEE Z J, YING K C, CHEN S C, et al. Applying PSO- based BPN for predicting the yield rate of DRAM modules produced using defective ICs [ J ]. Int J Adv Manuf Technol, 2010, 49 (9 - 12) : 987 -999.
  • 2CHE Z H. PSO-based back-propagation artificial neural net- work for product and mold cost estimation of plastic injection molding [J]. Comput Ind Eng, 2010, 58 (4): 625-637.
  • 3HE Changhong. Forest fuel loading estimates based on back propagation neutral network [ J ]. J Tsinghua University, 2011, 51 (2): 230-233.
  • 4LAZZUS J A. Autoignition temperature prediction using an artificial neural network with particle swarm optimization [J]. Int J Thermophys, 2011, 32 (5): 957-973.
  • 5LIN H D, CHIU S W. Flaw detection of domed surfaces in LED packages by machine vision system [ J ]. Expert Syst Appl, 2011, 58 (51) : 15208 - 15216.
  • 6YANG Wenzhu, LU Sukui, WANG Sile. Fast recognition of foreign fibers in cotton lint using machine vision [ J ]. Math Comput Modell, 2011, 54 (3): 877-882.
  • 7YIN Fei, MAO Huajie. Back propagation neural network modeling for warpage prediction and optimization of plastic products during injection molding [ J]. Mater Des, 2010, 32 (4) : 1844 - 1850.
  • 8Eghbal Hakimian,Abu Bakar Sulong.Analysis of warpage and shrinkage properties of injection-molded micro gears polymer composites using numerical simulations assisted by the Taguchi method[J]Materials and Design,2012.
  • 9Fei Yin,Huajie Mao,Lin Hua,Wei Guo,Maosheng Shu.Back Propagation neural network modeling for warpage prediction and optimization of plastic products during injection molding[J].Materials and Design.2010(4)
  • 10T.T. Chow,G.Q. Zhang,Z. Lin,C.L. Song.Global optimization of absorption chiller system by genetic algorithm and neural network[J].Energy & Buildings.2002(1)

共引文献27

同被引文献44

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部