期刊文献+

基于虚拟材料的T-B梁拓扑优化ESO方法 被引量:4

Study of ESO on Tie-beam problem using virtual material
下载PDF
导出
摘要 自从Zhou和Rozvany于2001年以T-B梁(Tie-Beam)问题质疑渐进结构优化方法ESO(Evolutionary Structural Optimization)的算法收敛性以来,结构最优化领域的研究者提出了多种算法以求解决这一问题。T-B梁问题仍是当前结构拓扑优化领域的研究热点,因为现有的各种T-B梁解法或是存有不足或是无法获得满意解答。本文在传统ESO算法中,将虚拟材料引入待删除单元,用以检测结构传力路径是否受到破坏,进而确定单元删除的合理性。算例表明,本文算法可有效防止ESO方法求解T-B梁问题时的失效并获得最优解,且本文算法只需在ESO迭代中附加一次检测,不改变ESO方法的迭代进程和寻优能力。 Since Zhou and Rozvany introduced Tie-beam problem to highlight the failure of Evolutionary Structural Optimization (ESO) in 2001, a lot of solutions have been proposed to solve this hard nut. The problem is unsolved yet because the current solutions contain some shortcomings or fail to obtain optimization. A virtual material method is proposed in this paper in which a checking operation is inserted into original ESO iterations. By evaluating the strain energy change of the selected element to which a virtual material with low Young's modulus is introduced, the failure of the structure's internal load path can be checked. Thereafter, the removal or of an element can be decided upon. The numerical examples show that the proposed method can prevent the ESO from failing to solve the Tie-beam problem. The proposed method does not change the evolutionary procedure of original ESO method and its ability to achieve optimization because the method adds a checking operation in iterations only.
出处 《计算力学学报》 CAS CSCD 北大核心 2017年第2期143-147,共5页 Chinese Journal of Computational Mechanics
基金 国家973课题(2014CB049403)资助项目
关键词 ESO 结构拓扑优化 T-B梁 虚拟材料 传力路径 有限元方法 ESO method topology optimization Tie-beam virtual material load path finite element method
  • 相关文献

参考文献2

二级参考文献26

  • 1宿新东,管迪华.利用双向渐进结构优化法对结构固有振型的优化[J].机械强度,2004,26(5):542-546. 被引量:7
  • 2罗志凡,卢耀祖,荣见华,张氢.基于一种新的应力准则的渐进结构优化方法[J].同济大学学报(自然科学版),2005,33(3):372-375. 被引量:9
  • 3XIE Y M, STEVEN G P. A simple evolutionary procedure for structural optimization[J]. Computers &. Structures, 1993,49(5) :885-896.
  • 4NHA CHU D, XIE Y M, HIRA A, et al. On various aspects of evolutionary structural optimization for problems with stiffness constraints [J]. Finite Elements in Analysis and Design, 1997,24(4) : 197- 212.
  • 5XIE Y M, STEVEN G P. Evolutionary structural optimization for dynamic problems [J ]. Computers & Structures, 1996,58(6) : 1067-1073.
  • 6MANICKARAJAH D, XIE Y M, STEVEN G P. An evolutionary method for optimization of plate buckling resistance[J]. Finite Elements in Analysis and Design, 1998,29 (3-4) : 205-230.
  • 7RONG J H, XIE Y M, YANG X Y, et al. Topology optimization of structures under dynamic response constraints [J]. Journal of Sound and Vibration, 2000,234(2) :177-189.
  • 8RONGJ H, XIE Y M, YANG X Y. An improved method for evolutionary structural optimisation against buckling[J]. Computers & Structures,2001, 79(3) :253-263.
  • 9TANSKANEN P. The evolutionary structural optimization method: theoretical aspects[J]. Computer Methods in Applied Mechanics and Engineering, 2002,191 (47-48) : 5485-5498.
  • 10ZHOU M, ROZVANY GIN. On the validity of ESO type methods in topology optimization[J]. Structural and Multidisciplinary Optimization, 2001,21 ( 1 ) : 80-83.

共引文献19

同被引文献24

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部