期刊文献+

轴承-转子系统在基础运动作用时的非线性分析 被引量:2

Nonlinear analysis of bearing-rotor system with base movements
下载PDF
导出
摘要 轴承-转子系统的非线性特性及其在基础运动作用时的响应,是离心机设备设计阶段必须考虑的。本文使用简化的多自由度转子模型进行模拟分析,运动方程考虑了非线性的油膜润滑轴承模型。应用自适应时间步长的Runge-Kutta-Felburg法求解微分运动方程组,将人造的正弦波加速度作为基础运动输入系统,使用Poincaré图、分岔图和瀑布图分别考察了垂直放置转子在有无基础运动作用时的动力学性质。快速傅里叶变换在频域内揭示了转动频率与基础振动频率之间的组合共振现象。计算的结果不仅给出了泵转子自身的非线性性质,也展示了泵转子在基础运动作用时的组合共振。 Nonlinear dynamics characteristics of bearing-rotor system are necessary to be investigated for centrifugal machines in design stage as well as nonlinear response of the system subjected to base move-ments. The simplified model with multi-freedom-degree is applied to perform the numerical simulation. The nonlinear model of oil film bearing is taken into account in motion equations. The adaptive step method of Runge-Kutta-Felburg is applied to solve the differential equations. The artificial sine wave acceleration is considered as base movement input to the system. The Poincaré maps, bifurcation diagrams and cascade maps are used to investigate the dynamics of vertical rotor system. Combination resonance behavior which due to both rotational speed and base movement is discovered by the Fast Fourier Transform. The results yield not only nonlinear characteristics of the pump rotor, but also combination resonance under base movements.
作者 王睿 郭杏林
出处 《计算力学学报》 CAS CSCD 北大核心 2017年第2期155-161,共7页 Chinese Journal of Computational Mechanics
基金 国家重点基础研究发展计划(2011CB706504)资助项目
关键词 非线性油膜力 分岔 油膜涡动 基础运动 组合共振 nonlinear oil film force bifurcation oil whirl base movement combination resonance
  • 相关文献

参考文献5

二级参考文献37

  • 1陈予恕,孟泉.非线性转子-轴承系统的分叉[J].振动工程学报,1996,9(3):266-275. 被引量:66
  • 2丁千 郎作贵 曹树谦 等.滑动轴承转子油膜振荡失稳影响因素的实验研究[J].哈尔滨工业大学学报,1998,:11-11.
  • 3[1]Xu M T,Cheng D L. A new approach to solving a type of vibration problem[J]. Journal of Sound and Vibration,1994,177(4):565-571.
  • 4[2]Lau S L, Chenung Y K, Wu S Y. Incremental har-monic balance method with multiple time scales for a periodic vibration of nonlinear system[J]. Journal of Mechanics,1983,50:816-871.
  • 5[3]Urabe M. Galerkin's procedure for nonlinear perio-dic systems[J]. Archives for Rational Mechanics and Analysis,1965,20:120-152.
  • 6[4]Urabe M, Beiter A. A numerical computation ofnonlinear forced oscillations by Galerkin procedure[J]. Journal of Mathematical Analysis and Applica-tions,1966,14:107-140.
  • 7[5]Sundararajan P, Noah S T. Dynamics of forced non-linear systems using shooting/arc-length continua-tion method application to rotor system[J]. ASME Journal of Vibration and Acoustics,1997,199:9-20.
  • 8[8]Xu Jianxue, Jiang Jun. The global bifurcation char-acteristics of force van der pol oscillator[J]. Chaos,Solitons and Fractals,1996,7(1):3 -19.
  • 9Muszynska A,Grant J W. Stability and instability of a two-mode rotor supported by two fluid-lubricated bearings [J]. ASME J. Vibration Acoustics,1991,113(3):316-324.
  • 10Kim Y B,Noah S T. Quasi-periodic response and stability analysis for a nonlinear Jeffcott rotor [J]. J.Sound and Vibration,1996,190(2): 239-253.

共引文献21

同被引文献26

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部