期刊文献+

多新息理论优化卡尔曼滤波焊缝在线识别 被引量:7

Kalman filtering optimized by multi-innovation theory for online weld detection
下载PDF
导出
摘要 针对间隙小于0.05 mm的低碳钢对接焊缝,用磁光传感方法获取焊缝位置信息,研究多新息理论优化卡尔曼滤波在焊缝识别及跟踪中的应用.在获取磁光图像及提取焊缝位置的过程中存在较多干扰,而传统卡尔曼滤波受噪声的影响较大,难以对焊缝偏差进行最优估计.为此,结合多新息理论,提出一种焊缝位置检测的卡尔曼滤波改进算法,在对当前时刻进行预测时,充分考虑之前多个时刻的运动状态,综合历史数据估计出焊缝位置信息,对不同新息值进行试验比较并考虑计算量和滤波精度,发现选用两个新息值优化卡尔曼滤波算法可得到较好的效果.结果表明,多信息理论优化卡尔曼滤波算法可有效提高焊缝位置检测精度. Amagneto-optical sensor was used to capture the images of butt joint weld of low carbon steel plate whose gap is less than 0.05 mm.In order to detect and track the weld,Kalman filtering which is optimized by a multi-innovation theory was applied to the magneto-optical image that contains the weld location information.Because of the noise interferences in acquiring magneto-optical images and data extracting,the standard Kalman filtering that is easily affected usually can not work efficiently.Therefore it is difficult to make an optimal estimation for the deviation in seam tracking by using the standard Kalman filtering.Based on the multi-innovation theory,an optimized Kalman filtering algorithm was proposed to detect the weld.When the present weld position is predicted,this optimized Kalman filtering algorithm was fully applied for the useful information of previous moment and historical data to estimate the weld location information.Experiments using different innovation values were carried out and the amount of calculation and filtering precision was considered.It was found that the optimized Kalman filtering algorithm could obtain better effect by using two innovation values.Experimental results showed that the seam tracking accaracy could be improved via using Kalman filtering optimized by multi-innovation theory.
出处 《焊接学报》 EI CAS CSCD 北大核心 2017年第3期1-4,共4页 Transactions of The China Welding Institution
基金 国家自然科学基金资助项目(51675104) 广东省科技发展专项资金资助项目(2016A010102015) 广州市科技计划资助项目(201510010089) 广东省计算机集成制造重点实验室开放基金资助项目(CIMSOF2016008) 佛山市科技创新专项基金资助项目(2014AG10015)
关键词 多新息理论 卡尔曼滤波 磁光成像 焊缝检测 multi-innovation theory Kalman filtering magneto-optical imaging weld detection
  • 相关文献

参考文献3

二级参考文献21

  • 1范文兵,刘春风,张素贞.一种强跟踪扩展卡尔曼滤波器的改进算法[J].控制与决策,2006,21(1):73-76. 被引量:28
  • 2丁锋,谢新民,方崇智.时变系统辨识的多新息方法[J].自动化学报,1996,22(1):85-91. 被引量:47
  • 3田贵云,张凝.一种新型电涡流位移传感器的研制[J].传感技术学报,1996,9(2):33-35. 被引量:6
  • 4费业察.误差理论与数据处理[M].合肥:合肥工业大学出版社.1994.
  • 5Itchburn R J,Burke S K,Posada M.Eddy-current nonde-structive in spection with thin spiral coils long cracks in steel[J].Journal ofNondestructive Evaluation,2003,2(2):63-77.
  • 6刘国海,施维,李康吉.插值改进EKF算法在组合导航中的应用[J].仪器仪表学报,2007,28(10):1897-1901. 被引量:25
  • 7Amir Bijan Yasrebi,Andy Wetherelt,Patrick Foster,John Coggan,Peyman Afzal,Frits Agterberg,Dariush Kaveh Ahangaran.Application of a density–volume fractal model for rock characterisation of the Kahang porphyry deposit[J].International Journal of Rock Mechanics and Mining Sciences.2014
  • 8Xiangdong Gao,Yonghua Liu,Deyong You.Detection of micro weld joint by magneto-optical imaging[J].Optics and Laser Technology.2013
  • 9Sarkar N,Chaudhuri B B.An efficient differential box-counting approach to compute fractal dimension of image[].IEEE Transactions on Systems Man and Cybernetics.1994
  • 10Cipolletti M P,Delrieux C A,Perillo G M E,et al.Border extrapolation using fractal attributes in remote sensing images[].Computers and Geosciences.2014

共引文献15

同被引文献60

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部