期刊文献+

基于GMM的视频图像人数统计算法 被引量:3

A people counting method based on Gauss mixture model
下载PDF
导出
摘要 针对摄像机俯视拍摄场景的人数统计问题,提出一种运算效率高、误检率低的人数统计方法。以人头部位为检测对象,采用运动侦测、边缘检测方法获取人头轮廓,在此基础上采用高斯混合模型(Gauss mixed model,GMM)分别对人头轮廓目标点集和椭圆模型进行建模,通过最小化人头轮廓目标点集与椭圆模型的GMM之间的欧氏距离求解椭圆参数,统计满足椭圆形状的轮廓数量,再通过形状滤波得到人数统计结果。人数统计对比实验结果表明,新方法的误检率低,且运算效率高。 People counting method with high operation efficiency and low false detection rate is proposed to count the people in the top views shoot by camera. Human heads are taken as the detection objects and head sketches are obtained by motion detection and edge detection based on the Gauss Mixture Model which is a- dopted to make the modeling of target point set and ellipse model of human head sketch. Elliptic parameter is solved by minimizing the Euclidean distance between the Gauss Mixture Model of target point set and ellipse model of human head sketch. Then, the number of elliptic sketches is counted. Finally, the number of people is obtained by shape filter. The result of contrast experiments shows that the proposed method has low false de- tection rate and high operation efficiency.
作者 田枫
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第2期197-203,共7页 Journal of Northwest University(Natural Science Edition)
基金 中央高校基本科研业务费自由探索基金资助项目(GK201703001)
关键词 人数统计 GMM 人头检测 边缘检测 运动侦测 people counting Gauss Mixture Model head detection edge detection motion detection
  • 相关文献

参考文献3

二级参考文献47

  • 1G Bastian,A Mathieu,K Kalin,C Daniel.A super-resolution framework for high-accuracy multiview reconstruction[J].International Journal of Computer Vision,2014,106(2):172-191.
  • 2S Shen.Accurate multiple view 3D reconstruction using patch based stereo for large-scale scenes[J].IEEE Transactions on Image Processing,2013,22(5):1901-1914.
  • 3Y Liu,L Cao,C Liu,Y Pu,H Cheng.Recovering shape and motion by a dynamic system for low-rank matrix approximation in L1 norm[J].The Visual Computer,2013,29(5):421-431.
  • 4M Marques,J Costeira.Estimating 3D shape from degenerate sequences with missing data[J].Computer Vision and Image Understanding,2009,113(2):261-272.
  • 5D Jacobs.Linear fitting with missing data for structure-from-motion[J].Computer Vision and Image Understanding,2008,82(1):57-81.
  • 6C H?ne,C Zach,A Cohen,R Angst.Joint 3D scene reconstruction and class segmentation.IEEE Conference on Computer Vision and Pattern Recognition[C].Portland Oregon,2013.97-104.
  • 7D Alessio.Adaptive non-rigid registration and structure from motion from image trajectories[J].International Journal of Computer Vision,2013,103(2):226-239.
  • 8T Wiberg.Computation of principal components when data are missing.Proceedings of the Second Symposium of Computational Statistics[C].Berlin,1976.229-326.
  • 9T Okatani,K Deguchi.On the Wiberg algorithm for matrix factorization in the presence of missing components[J].International Journal of Computer Vision,2007,72(3):329-337.
  • 10Y Zheng,S Sugimoto,S Yan,M Okutomi.Generalizing Wiberg algorithm for rigid and nonrigid factorizations with missing components and metric constraints.IEEE Conference on Computer Vision and Pattern Recognition[C].Rhode Island,USA,2012.2010-2017.

共引文献4

同被引文献13

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部