期刊文献+

基于地理位置时间序列的相似性研究 被引量:1

Research on similarity based on location time series
下载PDF
导出
摘要 位置时间序列常被应用到不同的研究领域,具有很高的商业价值。本文通过计算位置时间序列的余弦相似度找到确定与其近似的位置时间序列。同时针对余弦相似度在计算位置时间序列相似性出现的偏差,提出了一种余弦相似度的改进方法(单侧相似度)。单侧相似度给出了不同位置时间序列的包含关系,这种关系是余弦相似度的进一步解释,可以用来衡量不同研究对象之间的包含程度。通过实验,证明了单侧相似度更适合描述位置时间序列的相似性。 Position time series are often used in different research fields, and have high commercial value. By calculating and comparing the similarity of position time series, we can find the approximate position time series. For the deviation appears in similarity calculation of position time series by cosine similarity, an improved method(unilateral similarity) was proposed based on cosine similarity. Unilateral similarity given a containment relationship between different position time series, this relationship is further explained cosine similarity, which is used to measure the containment relationship between different research object. The experimental results show that the unilateral similarity is more suitable for describing the similarity of position time series.
出处 《电子设计工程》 2017年第8期37-40,共4页 Electronic Design Engineering
关键词 上网习惯 位置时间序列 位置权重 余弦相似度 单侧相似度 surfing habits position time series position weight cosine similarity unilateral similarity
  • 相关文献

参考文献6

二级参考文献59

  • 1周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 2宋玲,马军,连莉,张志军.文档相似度综合计算研究[J].计算机工程与应用,2006,42(30):160-163. 被引量:42
  • 3邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 4严莉莉,张燕平.基于类信息的文本聚类中特征选择算法[J].计算机工程与应用,2007,43(12):144-146. 被引量:7
  • 5YANG Y, PEDERSEN J O. A comparative study on feature selection in text categorization[ C ]//Proc of the 14th International Conference on Machine Learning. San Francisco : Morgan Kaufmann, 1997:412- 420.
  • 6GALAVOTTI L, SEBASTIANI F, SIMI M. Feature selection and negative evidence in automated text categorization [ C ]//Proc of KDD- 2000. Boston, MA:[s. n. ], 2000:16-22.
  • 7The Lancaster corpus of mandarin Chinese (LCMC) [ EB/OL]. http ://www. ling. lancs. ac. uk/corplang/lcmc/.
  • 8BUCHNER A G,MULVENNA M D,ANAND S S,et al.Data Mining and XML:Current and Future Issues[C]∥Web Information Systems Engineering.Washington:IEEE Computer Society,2000:131-135.
  • 9ALEXANDRE TERMIER,MARIE-CHRISTINE ROUSSET,MICHELE SEBAG.Tree Finder:A First Step Towards XML Data Mining[C]∥Proceedings of the 2002 IEEE International Conference on Data Mining.Maebashi City,Japan:IEEE Computer Society,2002:450-457.
  • 10ZHAO Qian-kun,CHENG Ling,BHOWMICK SOURAV S,et al.XML Structural Delta Mining:Issues and Challenges[J].Data and Knowledge Engineering Journal,2006,59(3):627-651.

共引文献173

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部