期刊文献+

基于多线性扩展的模糊双合作博弈的支付分配策略模型 被引量:7

Model of payoff allocation for bi-cooperative game with fuzzy coalitions based on multilinear extension
原文传递
导出
摘要 针对参与联盟的局中人具有一定参与度的情形,研究了具有模糊联盟的双合作博弈的支付分配问题.首先,给出双合作博弈支付分配方案的一般化形式;其次,提出一种由双合作博弈扩展到模糊双合作博弈的多线性扩展形式,进而给出模糊双合作博弈的支付分配策略,并说明该支付分配方案满足有效性、零元性、哑元性、联盟内部对称性、联盟间对称性和单调性;最后,通过成本分摊算例,验证了模糊双合作博弈支付分配模型的可行性. Under the assumption that players do not fully participate in the cooperation, but to some extent, this paper studied the problem of payoff allocation for bi-cooperative game with fuzzy coalitions. First, the generalized payoff allocation is proposed for bi-cooperative game. Then, an multilinear exten- sion form from bi-cooperative game to bi-cooperative game with fuzzy coalition is proposed. The payoff allocation model is constructed for bi-cooperative game with fuzzy coalitions. Furthermore, it proves that the payoff allocation satisfies some properties, such as efficiency, null player property, dummy player prop- erty, symmetric within coalitions, symmetric across coalitions, monotone property and so on. Finally, an example for cost distribution is provided to illustrate the feasibility of the developed method.
作者 孙红霞 张强 SUN Hongxia ZHANG Qiang(Business School, Beijing Technology and Business University, Beijing 100048, China School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China)
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2017年第4期990-998,共9页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(71401003) 教育部人文社科项目(14YJC630114)~~
关键词 合作博弈 双联盟 模糊联盟 多线性扩展 cooperative game bi-coalitions fuzzy-coalitions multilinear extension
  • 相关文献

参考文献2

二级参考文献24

  • 1Owen G. Game theory[M]. New York: Academic Press, 1995.
  • 2Gillies D B. Some theorems on n-person games[M]. Princeton: Princeton University Press, 1953.
  • 3Weber R J. Probabilistic values for games[M]. Cambridge: Cambridge University Press, 1988.
  • 4Shapley L S. Cores of convex games[J]. Int J of Game Theory, 1971, 1(1): 11-26.
  • 5Ichiishi T. Supermodularity: Application to convex games and greedy algorithm for LP[J]. J of Economy Theory, 1981, 25(2): 283-286.
  • 6Rodica Branzei, Dinko Dimitrov, Stef Tijs. Models in cooperative game theory[M]. Berlin: Springer, 2008.
  • 7Bilbao J M. Cooperative games on combinatorial structures[M]. Bosten: Kluwer Academic Publishers,.
  • 8Bilbao J M, Fernandez J R, Jimenez N, et al. The core and the Weber set for bicooperative games[J]. Int J of Game Theory, 2007, 36(2): 209-222.
  • 9Mont O K. Clarifying the concept of product-service system[J]. J of Cleaner Production, 2002, 10(3): 237-245.
  • 10Grabisch M, Labreuche Ch. Bi-capacitities-I: Definition. M/ibius transform and interaction[J]. Fuzzy Sets and Systems, 2005, 151(2): 211-223.

共引文献9

同被引文献46

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部