期刊文献+

反导系统对弹道群目标分离识别仿真 被引量:1

Simulation of Ballistic Target Group Separation and Identification in Anti-Missile System
下载PDF
导出
摘要 反导中段假目标数量众多,多个目标可能会位于同一雷达波束而无法分辨和识别。针对上述问题,首先使用独立成分分析算法进行弹道群目标混波的盲源分离,并从分离前后的各目标回波中提取若干种物理意义明确、提取难度较低、类别可分性强的特征,构成模糊支持向量机的训练及测试样本向量。然后基于改进的样本模糊隶属度函数和训练样本精简算法,利用一对多模糊支持向量机分类思想对弹道群目标进行真假判决。仿真结果表明,将独立成分分析与模糊支持向量机相结合可以成功解决反导中段群目标混波的分离难题,同时以较高识别率实现了真实弹头的有效识别。 The number of false target in the middle stage of anti - missile is large, multiple targets may be located on the same radar beam and cannot be separated and identified. Aiming at the problem, Firstly, the blind source separation of ballistic target group mixed echo is carried out by using the independent component analysis algorithm, and several kinds of features with clear physical meaning and strong separability are extracted as sample vector of FS- VM. Then, based on improved fuzzy membership function and training sample reduction algorithm, the rest FSVM is used to make true and false judgments of ballistic group target. Simulation results show that the combination method of ICA and FSVM successfully solved the problem of the separation of ballistic target group mixed echo, and the effective identification of the real warhead is achieved with high recognition rate.
作者 涂世杰 陈航 TU Shi - jie CHEN Hang(Northwestern Polytechnical University, Xi'an Shanxi 710068, China Air Force Engineering University, Xi'an Shanxi 710051, China)
出处 《计算机仿真》 北大核心 2017年第4期61-65,共5页 Computer Simulation
关键词 弹道群目标分离及识别 独立成分分析 特征提取 模糊支持向量机 Separation and identification of ballistic target group ICA Feature extraction FSVM
  • 相关文献

参考文献1

二级参考文献15

  • 1DAVIES M E, JAMES C J. Source separation using single channel ICA[J]. Signal Process, 2005, 87(8): 1 819- 1 832.
  • 2LIN Jin, ZHANG Aimin. Fault feature separation using wavelet-ICA filter[J]. NDT & E International, 2005, 38(6): 421-427.
  • 3SHAH V P, YOUNAN N H, DURBHA S S, et al. Feature identification via a combined ICA-Wavelet method for image information mining[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(1): 18-22.
  • 4ECHEVERRIA J C. Application of empirical mode decomposition to heart rate variability analysis[J]. Medical & Biological Engineering & Computing, 2001, 39: 471-479.
  • 5GAO Bin, WOO W L, DLAY S S. Single-channel source separation using EMD-Subband variable regularized sparse features[J]. IEEE Transactions on Audio Speech and Language Processing, 2011, 19(4): 961-976.
  • 6HYYARINEN A, OJA E. Independent component analysis: algorithms and applications[J]. Neural Networks, 2000, 13: 411-430.
  • 7LEACH K N. A survey paper on independent component analysis[J]. Neural Computing Surveys, 1999, 2: 94-128.
  • 8HYYAR1NEN A, KARHUNEN J. Independent component analysis[M]. New York: Wiley Interscience Publication, 2001.
  • 9MAINO D, FARUSI A, BACCIGALUPI C, et al. All-sky astrophysical component separation with fast independent component analysis[J]. Monthly Notices of the Royal Astronomical Society, 2002, 334(1): 53-68.
  • 10DAMERVAL C, MEIGNEN S, PERRIER V, et al. A fast algorithm for bidimensional EMD[J]. IEEE Signal Processing Letters, 2005, 12(10): 701-704.

共引文献20

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部