摘要
泊位和岸桥是集装箱港口非常最要的资源,合理的分派与调度可以有效提高作业效率。集装箱码头连续泊位-岸桥分配的仿真优化研究中,大多以总在港时间最短或总成本最小为优化目标,往往忽略个体船舶的等待时间,没有兼顾服务公平性。在考虑偏好泊位的基础上,加入容忍度约束,以船舶在港总时间成本为目标,建立连续泊位-岸桥分配的非线性数学规划模型。设计求解模型的一种基于嵌套循环进化算法,内循环采用贪心算法生成相应的泊位调度计划;外循环采用遗传算法进一步生成岸桥调度计划。最后,以VC++开发仿真程序进行求解。实验结果表明,该算法能够在可接受的计算时间内获得稳定的满意解,新的泊位岸桥分配策略及算法可以较好的解决容忍度约束下的连续泊位一岸桥分配问题。
A nonlinear mathematical programming model of the continuous berth - quay crane allocation is established, which considers the preference of the berth, adds the tolerance constraint and evaluating with the goal of the ships' total time costs in the port. A nested loop evolutionary algorithm is designed to solve the model, the inner loop is used to generate the corresponding berth scheduling scheme based on the greedy algorithm, and the outer loop is used to generate further quay scheduling by using genetic algorithms. Finally, a simulation program is developed to solve the problem of VC + +. The results show that the algorithm can obtain a stable satisfactory solution within an acceptable computation time, the new berth -quay crane allocation strategy and algorithm can well solve the allocation problem under the restraint of tolerance.
作者
郝杨杨
金永贺
杨斌
HAO Yang - yang JIN Yong - he YANG Bin(Logistics Research Center, Shanghai Maritime University, Shanghai 201306, China)
出处
《计算机仿真》
北大核心
2017年第4期306-310,共5页
Computer Simulation
基金
国家自然科学基金资助项目(71301101)
交通运输部建设科技项目(2015328810160)
上海自然科学基金(15ZR1420200)
教育部人文社科项目(15YJC630059)
关键词
泊位-岸桥
偏好泊位
容忍度
贪心算法
遗传算法
Berth - quay crane
Preferences berth
Tolerance
Greedy algorithm
Genetic algorithm