期刊文献+

基于杨氏理论的微型换热器传热壁面表面特性分析

Analysis of Heat Transfer Channel Surface Characteristic of Micro Heat Exchanger Based on Young's Theory
下载PDF
导出
摘要 微型换热器换热通道壁面的表面特性对流体流动沸腾特性有显著的影响.固体表面能常被用来表征微型换热器换热通道壁面的表面特性,可为微细通道中流体流动沸腾特性的研究提供理论依据;文中测量去离子水、乙二醇、甲酰胺在换热通道内侧左右壁面及底表面所形成的接触角,基于杨氏理论计算微型换热器换热壁面的表面能,并通过液滴的Wenzel模型分析微槽道内、外表面接触角差异形成的机理.研究结果表明:微型换热器换热通道内侧左、右壁面的表面能分别为5.2、5.6 MJ/m2,底表面的表面能为8.2 MJ/m2,微细通道内表面特性差异是由表面粗糙度不同造成的. The surface characteristic of the heat transfer channel of micro heat exchangers has a significant effect on the flow boiling performance of fluid. Solid surface energy is often used to describe the surface characteristics of the heat transfer channel, which can provide a theoretical basis for the research of the flow boiling performance of the fluid in micro-channels. In the investigation, the contact angles of deionized water, ethylene glycol and formamide with the left, right and bottom surfaces of the heat transfer channel were measured respectively, and the solid sur-face energy of the heat transfer channel was calculated on the basis of Young^ theory. Then, the forming mechanism of the contact angle difference between the inside and outside surfaces of the micro-channels was analyzed through the Wenzel model of droplet. The results show that the solid surface energy of the left, right and bottom surfaces of the heat transfer channel are respectively 5.2, 5.6 and 8.2MJ/m^2, and the surface roughness difference causes the inside surface features to be different.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第1期123-128,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(21276090)~~
关键词 微型换热器 表面特性 表面能 杨氏理论 Wenzel液滴模型 micro heat exchanger surface characteristic surface energy Young’s theory Wenzel droplet model
  • 相关文献

参考文献2

二级参考文献21

  • 1毕胜山,史琳.纳米制冷剂TiO_2/HFC134a水平管内流动沸腾换热实验研究[J].化工学报,2008,59(S2):104-108. 被引量:9
  • 2蒋兴良,舒立春,张志劲,谢述教,王岩.覆冰绝缘子长串交流闪络特性和放电过程研究[J].中国电机工程学报,2005,25(14):158-163. 被引量:48
  • 3苑吉河,蒋兴良,张志劲,胡建林,孙才新.低气压下三种覆冰支柱绝缘子直流闪络特性研究[J].中国电机工程学报,2005,25(15):12-15. 被引量:24
  • 4Phan C L. Accumulation du verglas sur les noveaux types engineering D' isolateurs sous haute tension [J]. Canadian Electrical Journal, 1977, 2(4): 24-28.
  • 5Khalifa M M, Morris R M. Performance of line insulators under rime ice [J]. IEEE TRans on Power Application and Systems, 1967, 2(86): 692-698.
  • 6Sun C X, Jiang X L. Study of flashover performance and voltage correction of DC insulator in icing districts of altitude of 2500m and below [C]//International conference on power system technology proceedings [J]. Yunnan Science and Technology Press, 2002, 4(5): 251-257.
  • 7Xie Q D, Fan G Q, Zhao N, et al. Facile creation of a bionic super-hydrophobic block copolymer surface [J]. Adva Mater, 2004, 16(20): 1830-1833.
  • 8Jan G, Efimenko, Kirill. Creating long-lived super-hydrophobic polymer surfaces through mechanically assembled monolayers [J]. Science, 2000, 290: 2130-2133.
  • 9Hozumi A, Takai O. PrepaRation of ultra water-repellent films by microwave plasma-enhanced CVD [J]. Thin Solid Films, 1997, 303: 222-225.
  • 10Didem Oner, Thomas J. McCarthy. Ultrahydrophobic surfaces effects of topography length scales on wettability [J]. Langmuir, 2000, 16 (20): 7777-7782.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部