期刊文献+

基于局部特征的多模态过程监控方法 被引量:3

Multimode Process Monitoring Based on Local Feature
下载PDF
导出
摘要 多模态过程中各个模态均有不同的特征,因此模态数据的局部特征比全局特征更能有效、合理地表征实际化工过程。为利用多模态数据的局部特征,提出了基于数据局部特征的多模型方法(LFMM)用于多模态过程的监控。首先,离线阶段考虑到数据间的时序信息以及数据特征,利用不同时间窗内数据的变异系数(CV)完成多模态数据集的聚类;然后,考虑到不同模态的数据在空间分布上具有不同的疏密性特征,建模阶段利用局部离群因子(LOF)算法计算数据在其模态数据集中的局部密度,监控时将在线数据的局部密度作为统计特征,并构造全局概率指标用于多模态过程监控;最后,通过田纳西伊斯曼(TE)过程验证了本文方法的有效性。 Every mode has different features in a multimode process, so the local features of modal data can be more effectively than global features for the reasonable characterization of chemical process. In order to use the local characteristics of multimodal data,this paper proposes a local feature based multiple model method , called, Local Feature-based Multiple M o d e l (LFMM ), for process monitoring. Firstly, the sequential information between data and the modal data features is utilized in the offline phase and the coefficient of variance of data in different time w i n d o w s is applied for the clustering of the training data of multimode process. In the latter model p h a s e , L O F algorithm is utilized to compute the local data density in their mode data set. In the online phase,by taking the local data density as statistic character,a n e w global probability index is established as a monitoring statistic for multimode process monitoring. Finally, T E process is adopted to verify the effectiveness of the proposed m e t h o d .
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第2期260-265,共6页 Journal of East China University of Science and Technology
基金 国家自然科学基金(61374140) 国家自然科学基金青年基金(61403072)
关键词 多模态 局部特征 多模型 过程监控 时序信息 m u l t i m o d e local feature multiple model process monitoring sequential information
  • 相关文献

参考文献3

二级参考文献34

  • 1Wang X, Kruger U, Irwin G W. Process monitoring approach using fast moving window PCA [J].Industrial & Engineering Chemistry Research, 2005, 44 (15) : 5691- 5702.
  • 2Liu X Q, Kruger U, Littler T, Xie L, Wang S Q. Moving window kernel PCA for adaptive monitoring of nonlinear processes[J]. Chemometrics - Intelligent Laboratory Systems, 2009, 96 (2): 32-143.
  • 3Chen J H, Liu J L. Mixture principal component analysis models for process monitoring[J].Industrial & Engineering Chemistry Research, 1999, 38 (4) : 1478- 1488.
  • 4Liu J L, Chen D S. Fault detection and identification using modified Bayesian classification on PCA subspace [J]. Industrial & Engineering Chemistry Research, 2009, 48 (6) : 3059-3077.
  • 5Ge Z, Song Z. Mixture Bayesian regularization method of PPCA for multimode process monitoring [J]. AIChE Journal, 2010, S6 (11) : 2838-2849.
  • 6Ng Y S, Srinivasan R. An adjoined multi-model approach for monitoring batch and transient operations [J]. Computers&Chemical Engineering, 2009, 33 (4) : 887-902.
  • 7Lee Y H, Jin H D, Han C H. On-line process state classification for adaptive monitoring [J]. Industrial Engineering Chemistry Research, 2006, 45 (9) : 3095- 3107.
  • 8Cheng C, Chiu M S. Nonlinear process monitoring using JITL-PCA [J].Chemometrics and Intelligent Laboratory Systems, 2005, 76 (1): 1-13.
  • 9Liu J L. Fault detection and classification for a process with multiple production grades [J]. Industrial &Engineering Chemistry Research, 2008, 47 (21) : 8250-8262.
  • 10Yu J, Qin S J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models [ J ]. AIChE Journal, 2008, 54 (7) : 1811-1829.

共引文献8

同被引文献11

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部