期刊文献+

基于双平行互质阵列的二维高精度DOA估计 被引量:4

2D-DOA estimation with high accuracy using double parallel co-prime array
下载PDF
导出
摘要 为利用互质结构进行二维高精度波达方向(direction of arrival,DOA)估计,设计了双平行互质阵列,提出了构建非均匀虚拟阵列的失配处理贝叶斯学习方法,最大限度扩展了测向自由度的同时,降低了网格失配对DOA估计精度的影响。首先,对平行互质阵列进行垂直方向扩展构建了双平行互质阵列;其次,进行了非均匀虚拟阵列扩展,利用稀疏贝叶斯学习进行稀疏重构;然后,利用到达角相邻网格的能量关系,通过泰勒展开,进行了低复杂度的失配处理;最后,提出剔除规则和选择规则,融合两个方向子阵的估计结果。理论分析和仿真实验证明了所提阵列和DOA估计方法的有效性。 In order to gain high accuracy of two dimensional direction of arrival (2D-DOA) estimation based on co-prime structure,double parallel co-prime array is designed and an off-grid process sparse Bayesian learn-ing algorithm is proposed through non-uniform virtual array. In this way, degrees-of-freedom is extended and off-grid influence on 2D-DOA estimation accuracy is reduced at the same time. Firstly, the double parallel co-prime array is built by vertical extension on the parallel co-prime array. Secondly, a non-uniform virtual array is developed and the sparse Bayesian learning algorithm is utilized to reconstruct signals. In addition,the energy relationship of the true DOA's two nearest grids is utilized to conduct a low computational complexity off-grid process through Taylor expansion. Finally' the elimination rule and the selection rule are proposed to fuse esti-mation results of the two direction parallel co-prime array. Theoretical analysis and simulation results show the validity of the proposed array and DOA estimation method is proved through.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2017年第5期977-983,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(61401504) 军内计划科研项目 中国博士后科学基金(2014M562562) 湖北省自然科学基金(2016CFB288)资助课题
关键词 二维波达方向估计 双平行互质阵列 稀疏贝叶斯学习 网格失配处理 two dimensional direction of arrival (2D-DOA) estimation double parallel co-prime array sparse Bayesian learning off-grid process
  • 相关文献

参考文献2

二级参考文献26

  • 1刘学斌,韦岗,季飞.基于四阶累积量扩展孔径的线阵设计[J].电波科学学报,2006,21(1):126-130. 被引量:4
  • 2Wong K T and Yuan X. Vector cross-product direction- finding with an electromagnetic vector-sensor of six orthogonally oriented but spatially non-collocating dipoles / loops[J]. IE EE Transactions on Signal Processing, 2011, 59(1): 160-171.
  • 3Wong K T and Zoltowski M D. Closed-form direction finding and polarization estimation with arbitrarily spaced electromagnetic vector-sensors at unknown locations[J].IEEE Transactions on Antennas and Propagation, 2000, 48(5): 671-681.
  • 4Xu Y, Liu Z, Wong K T, et al.. Virtual-manifold ambiguity in HOS-based direction-finding with electromagnetic vector- sensors[J]. IEEE Transactions on Aerospace & Electronic Systems, 2008, 44(4): 1291-1308.
  • 5Liu Tsung-hsien and Mendel J M. Azimuth and elevation direction finding using arbitrary array geometries[J]. IEEE Transactions on Signal Processing, 1998, 46(7): 2061-2065.
  • 6Dogan M C and Mendel J M. Applications of cumulants to array processing-part I: aperture extension and array calibration[J]. IEEE Transactions on Signal Processing, 1995, 43(5): 1200-1216.
  • 7Pal P and Valdyanathan P P. Coprime sampling and the music algorithm[C]. IEEE Digital Signal Processing Workshop and Signal Processing Education Workshop, Pasadena, 2011: 289-294.
  • 8Pal P and Valdyanathan P P. Nested arrays: a novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4167-4181.
  • 9Vaidyanathan P P and Pal P. Theory of sparse coprime sensing in multiple dimensions[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3592-3608.
  • 10Vaidyanathan P P and Pal P. Sparse sensing with co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573-586.

共引文献15

同被引文献12

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部