期刊文献+

一种两阶段的神经网络属性选择方法 被引量:2

A TWO-PHASE METHOD OF NEURAL NETWORK FEATURE SELECTION
下载PDF
导出
摘要 神经网络的输入属性选择一直是一个比较困难的问题.由于神经网络反复训练的时间复杂度,Wrap-per方法是不适用的,而单纯使用Filter方法也难以获得很好的分类精度.文中提出了一种两阶段的神经网络属性选择方法,以综合Filter和Wrapper两类方法的优势.该方法首先采用基于不一致率的遗传算法GFSIC来删除属性集合中的无关属性,然后采用基于敏感性度量的属性选择算法SBFCV来删除冗余和无用的属性.研究和实验结果表明,该方法可以有效地删除原始数据中的无关和冗余属性,增强神经网络的泛化能力. Neural network feature selection is an open issue hard to solve.Because of the time complexity of retraining the network,wrapper methods are infeasible.On the other hand,filter methods are not enough to get good classification accuracy.This paper presents a twophase feature selection method,which takes advantage of both filter and wrapper methods.It begins the first phase by running GFSIC algorithm,a filter method based on inconsistency,to remove irrelevant features.In the following phase,it runs SBFCV algorithm,a wrapper method based on sensitivity,to remove redundant or useless features from neural network's consideration.Analysis and experimental studies show that the new method can perform feature selection effectively and improve the generalization of neural network as well.
出处 《广西师范大学学报(自然科学版)》 CAS 2003年第A01期41-45,共5页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(60073030)
关键词 属性选择 神经网络 过滤器方法 包装器方法 遗传算法 feature selection neural network Filter Wrapper genetic algorithm
  • 相关文献

同被引文献17

  • 1王琪.软件质量预测模型中的若干关键问题研究[D].上海:上海交通大学.2006.
  • 2FU Xiu-ju, WANG Li-po. Rule extraction based on data dimensionality reduction using RBF neural networks [ C ]//Proc of the 8th International Conference on Neural Information Processing. 2001:149-153.
  • 3KEAK N, CHOI C H. Input feature selection for classification prohlem [J].IEEE Tran on Neural Networks,2002,13(1) :143-159.
  • 4ENGELBRECHT A P. A new pruning heuristic based on variance analysis of sensitivity information[ J]. IEEE Trans on Neural Networks,2001,12(6) :13g6-1399.
  • 5CONDRA I. Applying machine learning to software fault-proneness prediction[ J ]. The Journal of System and Software, 2008,81 (2) :186-195.
  • 6ASUNCION A, NEWMAN D J. UCI machine learning repository[ EB/ OL]. (2007). http://www. ics. uci. edu/- mleam/MLRepository. html.
  • 7SAXEN H,PETTERSSON F. A data mining method applied to a metallurgical process[C]//Proeeedings of the 2007 IEEE Symposium on Computational Intelligence and Data Mining. Honolulu,HI :IEEE,2007:368-375.
  • 8MOODY J ,DARKEN C J. Fast learning in networks of locally turned processing units[J]. Neural Computation, 1989, 1(2):281-294.
  • 9CHEN S,COWAN C F N,GRANT P M. Orthogonal least squares learning algorithm for radial basis function networks[J]. IEEE Transactions on Neural Networks,1991,2(2) :302-309.
  • 10Han Jiawei,Kamber M.数据挖掘概念与技术[M].范明,孟小峰,译.北京:机械工业出版社,2006

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部