期刊文献+

基于遗传算法-人工神经网络的发电机定子铁心补偿预测模型研究 被引量:3

Research on Predictive Model for Compensation of Generator Stator Core Based on GA and Artificial Neural Network
下载PDF
导出
摘要 在发电机定子铁心的叠装过程中,现场工程师根据压铅试验及自身经验来修正预补偿表,并实时放置补偿片。由于人为补偿经验及数据无法储存,导致补偿方案及结果不一致,质量无法准确管控。利用遗传算法和人工神经网络建立了发电机定子铁心叠装补偿的智能决策模型。这一模型可利用已积累的人为补偿经验,根据实时压铅数据来优化发电机定子铁心的补偿方案,从而将工程师的发电机定子铁心补偿经验固化,并实现发电机定子铁心生产质量的智能管控。 During the stacking process of the stator core of the generator, the field engineer corrects the pre-compensation table according to the pressure lead test and the self-experience, and places the balancing tab in real time. As human experience and data for compensation can not be stored, the compensation programs may be inconsistent with the outcome so that the quality can not be controlled accurately. An intelligent decision model for compensation of iron core of generator stator during stacking process was established by using genetic algorithm and artificial neural network. This model can be used to optimize the compensation scheme for the iron core of the generator stator by utilizing the accumulated experience of artificial compensation and the pressure lead data in real-time. This approach can solidify the engineer's experience on the compensation of the iron core of the generator stator and achieve intelligent control of the production quality of the iron core of the stator.
出处 《机械制造》 2017年第4期32-34,共3页 Machinery
关键词 遗传算法 人工神经网络 发电机 铁心 补偿 GA Artificial Neural Network Generator Iron Core Compensation
  • 相关文献

参考文献10

二级参考文献60

  • 1丁明,张立军,吴义纯.基于时间序列分析的风电场风速预测模型[J].电力自动化设备,2005,25(8):32-34. 被引量:185
  • 2唐万梅.BP神经网络网络结构优化问题的研究[J].系统工程理论与实践,2005,25(10):95-100. 被引量:73
  • 3[1]Pau- Lo Hsu,Wei- Ru Fann.Fuzzy Adaptive Control of Machining Processes With a Self- Learning Algorithm.Tran sactions of the the ASME Journal of Manufacturing Science and Engineering, 1996.118(12):522- 529
  • 4[2]T.J.Ko,D.W.Cho.Cutting state monitoring in milling by neural networks,Int .J.Mach.Tools Manufact, 1994.34(5): 659- 676
  • 5[3]Liang.S,Dornfeld.D.A,Tool wear detection using time ser ies of acoustic emissiong.Transactions of the ASME,Journal of Engineering Industry, 1989(30):199
  • 6[4]L.Monostori,Cs.Egresits.On hybrid and its application in intelligent manufacturing.Computer in Industry, 1997(33): 111
  • 7[5]Chin- Teng Lin,C.S.George Lee.Neural network based fuzzy logic control decision system.IEEE Transactions on Computers, Vol,40,No12,1991
  • 8Samanta. B. Artificial Neural Networks and Genetic Algorithms for Gear Fault Detection [ J ]. Mechanical Systems and Signal Processing, 2004(18) : 1273 - 1282.
  • 9Jack L. B. and Nandi A. K.. Fault Detection Using Support Vector Machines and Artificial Neural Networks, Augmented by Genetic Algorithms [J]. Mechanical Systems and Signal Processing, 2002, 16(2): 373 - 390.
  • 10周明 孙树栋.遗传算法原理与应用[M].北京:国防工业出版社,1999.161-166.

共引文献217

同被引文献18

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部