期刊文献+

高速列车受电弓气动噪声降噪 被引量:21

Reduction of Aerodynamic Noise of High-speed Train Pantograph
下载PDF
导出
摘要 基于Lighthill声学理论,采用宽频带噪声源模型、大涡模拟和Ffowcs Williams-Hawkings声学模型对某型高速列车气动噪声进行数值模拟,建立3节编组高速列车整车气动噪声模型,分析该型高速列车的主要气动噪声声源及远场气动噪声特性,并以受电弓为主要气动噪声源进行降噪研究,主要考虑受电弓的开/闭口方式、不同受电弓导流罩结构、受电弓导流罩不同安装位置等主要噪声源部位处的低噪声设计。基于以上分析,得到低噪声的高速列车受电弓结构,较原始高速列车其最大声压级减小3.1 dBA,达到低噪声设计目标。且通过风洞试验验证了所提出的高速列车气动噪声计算方法的有效性和正确性。 Based on Lighthill acoustic theory in this paper, broadband noise source model, large eddy simulation and Ffowcs Williams-Hawkings equation are used to perform numerical simulations in aerodynamic noise of a high-speed train. The aerodynamic noise model of full scale high-speed train is established. The main aerodynamic noise source and the characteristics of far-field aerodynamic noise of a high-speed train are analyzed, as well the analysis methods of noise reduction based on the main noise source is presented. The low-noise design and improvement of high-speed train primarily based on the main noise source such as the knuckle-downstream direction/the knuckle-upstream direction, the different pantograph fairings and the different installations of pantograph fairings. Based on the above analysis, the low-noise structure of full scale high-speed train pantograph which max sound pressure level is 3.1 dBA lower than the original trains is obtained. Thus the designed goal of noise reduction has been achieved. In addition, the accuracy and effectiveness of calculating method of aerodynamic noise has been proved by wind tunnel test.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2017年第6期94-101,共8页 Journal of Mechanical Engineering
基金 国家科技支撑计划(2013BAG24B02) 国家重点研发计划课题(2016YFB1200403) 高速铁路基础研究联合基金(U1234208)资助项目
关键词 高速列车 受电弓 受电弓导流罩 气动噪声 大涡模拟 降噪设计 high-speed train pantograph pantograph fairing aerodynamic noise large eddy simulation low-noise design
  • 相关文献

参考文献6

二级参考文献46

  • 1刘堂红,田红旗.磁浮列车明线交会横向振动分析[J].交通运输工程学报,2005,5(1):39-44. 被引量:14
  • 2EDWARD DUELL, JOEL W, STEVE A, et al. Recent advance in large-scale aeroacoustic wind tunnel[R]. AIAA 2002-2503, 2002.
  • 3BROUWER H H. Anechoic wind tunnels[R]. NLR- TP-97517,1997.
  • 4JAMES C YU, ABRAHAMSON A LOUIS. Acoustic treatment of the NASA Lanley 4-by 7-meter tunnel: a feasibility study[R]. NASA-TP-2563, 1986.
  • 5THOMAS J MUELLER(Ed. ) Aeroacoustic measurements [M]. Springer-Verlag, 2002.
  • 6TOSHIFUMI KUDO, KAZUHIRO MAEDA, MASAHA- RU NISHIMURA. Techniques of reducing aerodynamic noises in 3/4 open-jet wind tunnels[J]. Journal of envi- ronment and engineering, 2009, 4(2): 276-288.
  • 7WITTSTOCK V, BETHKE C. The influence of bandwidth on the qualification of anechoic and hemianechoic rooms[R]. The 33rd International Congress and Exposition on Noise Control engineering [C]. Intel-noise 2004, 2004.
  • 8KENNETH A CUNEFARE, JEFF BADERTSCHER, VOLK ER WIOn the qualification of anechoic cham bers Issues related to signals and handwidth[J]. J Acoust. Soc. Am., 2006, 120(2): 820-829.
  • 9TYLER J M, SOFRIN T G. Axial flow compressor studies[J]. SAE Transactions, 1962, 70.
  • 10DAVID A NELSON. Reduced-noise gas flow design guide [R]. revised. NASA Glenn research center, 2005.

共引文献153

同被引文献152

引证文献21

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部