期刊文献+

考虑样本优化的风电机组齿轮箱轴承故障预测 被引量:4

Wind Turbine Gearbox Bearing Fault Prediction with Sample Optimization
下载PDF
导出
摘要 由于风电机组SCADA(supervisory control and data acquisition)系统包含较多冗余信息并且数据之间具有较大耦合性,因此在数据挖掘过程中进行样本优化意义重大。文章采用非线性状态估计(NEST)方法建立齿轮箱轴承温度模型并用其进行轴承故障预测,首先采用灰色关联度分析法为选择观测向量提供理论依据,再采用相似度分析法构造简约过程记忆矩阵,使其在不冗余的情况下尽可能覆盖齿轮箱全部正常工作状态以实现样本优化,进而当齿轮箱发生故障时,通过简约矩阵训练的模型残差将较早超出阈值并提前进行预警。最后结合某风电机组实际运行数据进行仿真分析,验证了模型的时效性与优越性。 Because the wind turbine SCADA system contains too much information which is redundant and has large coupling,it' s important to carry out the sample optimization in the process of data mining. This paper uses the non- linear state estimation (NEST) to establish temperature model of gearbox bearing by which the bearing fault can be predicted. Firstly,it uses the gray correlation analysis method to provide the theoretical basis, and which caters for se- lecting observation vector. Secondly, it uses the similarity analysis to construct the simple process memory matrix and achieve sample optimization, which can make the data cover the whole normal working condition of the gearbox as far as possible without redundancy. Thirdly,When the gearbox fault occurs,the improved model' s residual will exceed the threshold and alert. Besides, the warnings can be launched in advance. Finally, it deals with the wind turbine op- eration data by simulation analysis to verify the model' s timeliness and superiority.
作者 姚万业 邸帅 宋鹏 吕猛 Yao Wanye Di Shuai Song Peng Lyu Meng(North China Electric Power University, Baoding 071003, China State Grid Jibei Electric Power Co. Ltd. Research Institute, China Electric Power Research Institute Co. Ltd.,Beijing 100045 ,China)
出处 《华北电力技术》 CAS 2017年第4期44-49,共6页 North China Electric Power
关键词 齿轮箱 故障预测 相似度分析 非线性状态估计 gearbox bearing, fault prediction, similarity analysis, nonlinear state estimation
  • 相关文献

参考文献4

二级参考文献57

  • 1闫哲,王明春.基于核主元分析的凝汽器系统故障诊断[J].热力发电,2013,42(4):57-60. 被引量:2
  • 2王松岭,刘锦廉,许小刚.基于小波包变换和奇异值分解的风机故障诊断研究[J].热力发电,2013,42(11):101-106. 被引量:13
  • 3杨延西,刘丁.基于小波变换和最小二乘支持向量机的短期电力负荷预测[J].电网技术,2005,29(13):60-64. 被引量:85
  • 4梁平,范立莉,龙新峰.非线性模型在汽轮发电机组振动故障预测中的应用[J].华南理工大学学报(自然科学版),2006,34(6):122-126. 被引量:8
  • 5Crabtree C J, Feng Y, Tavner P J. Detecting incipient wind turbine gearbox failure., a signal analysis method for on-line condition monitoring[C]//Proceeding of European Wind Energy Conference, Poland, 2010.
  • 6Hameed Z, Hong Y S, Cho Y M, et al. Condition monitoring and fault detection of wind turbines and related algorithms: a review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(1): 1-39.
  • 7Amirat Y, Benbouzid M, A1-Ahmar E. A brief status on condition monitoring and fault diagnosis in wind energy conversion systems[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2629-2636.
  • 8Lu Bin, Li Yaoyu, Wu Xin. A review of recent advance in wind turbine condition monitoring and fault diagnosis [C]//Proceedings of Power Electronics and Machines in Wind Application, Lincoln, 2009: 1-7.
  • 9Zaher A, McArther S D J, Infield D G, et al. Online wind turbine fault detection through automated scada data analysis[J]. Wind Energy , 2009, 12(6): 574-593.
  • 10Yang Wenxian, Tavner P J, Crabtree C J, et al. Costeffective condition monitoring for wind turbines[J]. IEEE TranslndustrialElectronics, 2010, 57(1): 263-271.

共引文献172

同被引文献38

引证文献4

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部