期刊文献+

基于大规模手机定位数据的群体活动时空特征分析 被引量:24

Spatio-temporal Analysis of Aggregated Human Activities Based on Massive Mobile Phone Tracking Data
原文传递
导出
摘要 城市空间与居民行为不断交互,相互影响。探究城市空间中的群体活动分布及其时空变化能够帮助数据驱动的城市规划与城市治理。基于大数据的时空间群体活动研究是当前时空大数据研究的一个热点。本文以深圳市为例,基于约1000万手机用户在某一工作日的基站尺度的手机定位数据,识别用户停留位置和停留活动,重建活动语义信息,分析用户的停留点和停留活动的分布差异,研究群体活动的时空分布模式,探讨人群活动模式的多样分布特征。研究表明:停留位置和活动分布存在差异,每人每天平均的停留个数约为2.1个,而每人每天平均从事的活动约为3.4个;不同类型的活动在时间上存在波动;群体活动存在空间分异特征,整体上服从"空间幂律"。本研究揭示了城市空间中群体活动的多样性及其时空分布特征,对于城市居民活动研究、城市交通优化和城市规划具有重要的意义。 Urban space and the behavior of human activities constantly interact with each other. Investigation on distribution of aggregated human activities and spatio-temporal change benefits data-driven policy-making in urban planning and urban governing. In the era of big data, with the development of information and communication technologies, it is possible to collect city-scale data with high resolution in space and time by various location-aware devices and sensors. Exploration of spatial-temporal activities attracts a lot of attention. By taking about 10 million one-day tracking data of mobile phone users in Shenzhen, China as an example, this paper firstly identified their stay locations according to spatial and temporal rules to generate stay trajectory for each individual and recovered activity semantic information by labelling activity types for each stay locations. Then, the significant differences in patterns of distributions of stay locations and their activities were analyzed. Spatial and temporal distributions of different human activities were explored, respectively. The study shows that the distribution of stay locations and activities is obviously heterogeneous. The average number of stay locations of an individual per day is 2.1, while the average number of activities an individual engaged in per day is 3.4. This study furthermore suggests that different types of activities have temporal variance and spatial heterogeneity. The temporal distribution fluctuates significantly over 24 hours, which is in accordance with daily routine. The spatial distribution overall obeys"space power law", and the spatial distribution of social activity, which has a faster-down tail,shows a more obvious pattern of spatial segregation than the other two activities. The study revealed the diversity and heterogeneity of spatial and temporal distribution of human aggregated activities in urban space, which is meaningful in analyzing human activities research and facilitating urban traffic optimization and urban planning.
出处 《地球信息科学学报》 CSCD 北大核心 2017年第4期467-474,共8页 Journal of Geo-information Science
基金 国家自然科学基金项目(41401444 41371377 41671387) 深圳大学青年教师科研启动项目(2016065) 国土资源部城市土地资源监测与仿真重点实验室开放基金资助课题(KF-2016-02-009)
关键词 手机定位数据 轨迹分析 时空大数据 群体活动 时空特征 mobile phone tracking data trajectory analysis spatial-temporal big data aggregated human activities spatial-temporal pattern
  • 相关文献

参考文献3

二级参考文献45

  • 1AhaltSC.为什么需要数据科学[J].中国计算机学会通讯,2013,9(12):11-15.
  • 2大数据史记2013:盘点中国2013行业数据量[OL].http://www.36dsj.com/archives/6285,2013.
  • 3Zikopoupos P C,Eaton C, de Roos D, et al. Under- standing Big Data, Analytics for Enterprise Class Hadoop and Streaming Data [ OL]. http..//public. dhe. ibm. com/common/ssi/ecm/ en/im114296usen/ IML14296USEN. PDF, 2012.
  • 4Karel R. See Big Data Through a Different Lens [OL]. https : //www. informatica, corn/potential-at- work/information-leaders/article/see-big data. sht- ml,2013.
  • 5李德仁,王树良,李德毅.空间数据挖掘理论与应用[M].2版.北京:科学出版社,2013.
  • 6Li Q Q, Zhang T, Yu Y. Using Cloud Computing to Process Intensive Floating Car Data for Urban Traffic Surveillance[J]. International Journal of Geographical Information Science, 2011, 25 (8) : 1 301-1 322.
  • 7Li D R, Cheng T. KDG Knowledge Discovery from GIS[C]. The Canadian Conference on GIS, Ottawa, Canada, 1994.
  • 8Wong P C,Thomas J. Visual Analytics[J]. IEEE Computer Graphics and Applications, 2004, 24 (5) : 20-21.
  • 9Kovalerchuk B, Schwing J. Visual and Spatial A- nalysis: Advances in Data Mining, Reasoning, and Problem Solving[M]. Netherlands:Springer, 2004.
  • 10CCF大数据专家委员会.2014年大数据发展趋势预测[J].中国计算机学会通讯,2014,10(1):32-36.

共引文献319

同被引文献301

引证文献24

二级引证文献127

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部