期刊文献+

有色噪声激励下非线性吸振器的能量传递 被引量:1

Energy Transfer of Nonlinear Vibration Absorber under Colored Noise Excitation
下载PDF
导出
摘要 将双稳态振子作为非线性吸振器,建立了含非线性吸振器的主系统力学模型,给出了有色噪声激励下系统的控制方程并进行了量纲一化。借助数值仿真,研究了系统初值、调谐频率比、质量比、阻尼系数对主系统和非线性吸振器振动能量的影响规律。通过系统结构参数的逐步优化选择,获得了将主系统振动能量最小化并使非线性吸振器振动能量最大化的最优结构参数配置区间。 Bistable oscillator was adopted as nonlinear vibration absorber herein. Mechanics model of main system with a nonlinear vibration absorber system was established. Nondimensional governing equation of the main system with the nonlinear vibration absorber system was obtained under colored noise excitation. Effect laws of structural parameters on vibration energy of the nonlinear vibration ab-sorber and the main system were obtained by means of simulations, such as initial condition, tuning frequency ratio? mass ratio and damping coefficient. Optimal parameter configuration conditions of the nonlinear vibration absorber with maximum vibration energy of vibration absorber and main system with minimum vibration energy were obtained by means of gradual selection of the optimal parameters.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2017年第8期888-894,共7页 China Mechanical Engineering
基金 国家自然科学基金资助项目(11572243) 陕西省自然科学基金资助项目(2016JM5020)
关键词 有色噪声 非线性吸振器 质量比 调谐频率比 参数优化 colored noise nonlinear vibration absorber massratio tuning frequency ratio pa-rameter optimization
  • 相关文献

参考文献3

二级参考文献41

  • 1Kopidakis G, Aubry G, Tsironis P. Targeted energy transfer through discrete breathers in nonlinear systems [ J ]. Physical Review Letters, 2001, 87: 165501.
  • 2Gendelman O, Manevitch L, Vakakis A F, et al. Energy pumping in coupled mechanical oscillators, part I: dynamics of the underlying Hamiltonian systems[ J]. Journal of Applied Mechanics, 2001, 68:34-41.
  • 3Gendelman O, Gorlov D, Manevitch L, Musienko A. Dynamics of coupled linear and essentially nonlinear oscillators with substantially different masses [ J]. Journal of Sound and Vibration, 2005, 286 : 1 - 19.
  • 4Lee Y, Kerschen G, Vakakis A F, et al. Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment [ J]. Physica D, 2005, 204 ( 1 2) :41 - 69.
  • 5Kerschen G, Lee Y, Vakakis A F, et al. Irreversible passive energy transfer in coupled oscillators with essential nonlinearity [J]. SIAM Journal on Applied Mathematics, 2006, 66 (2) : 648 - 679.
  • 6Kerschen G, Gendelman O, Vakakis A F, et al. Impulsive periodic and quasi-periodic orbits of coupled oscillators with essential stiffness nonlinearity [ J ]. Communications in Nonlinear Science and Numerical Simulation, 2008, 13(5): 959 - 978.
  • 7Panagopoulos P, Gendelman O, Vakakis A F. Robustness of nonlinear targeted energy transfer in coupled oscillators to changes of initial conditions [ J]. Nonlinear Dynamics, 2007, 47(4) : 377 -387.
  • 8Gendehnan O. Bifurcations of nonlinear normal modes of linear oscillator with strongly nonlinear damped attachment[J]. Nonlinear Dynamics, 2004, 37(2) : 115 -28.
  • 9Manevitch L, Gourdon E, Lamarque C. Parameters optimization for energy pumping in strongly non-homogeneous 2 DOF system [ J ]. Chaos Solitons Fractals, 2007, 31 (4) : 900 - 911.
  • 10Kerschen G, Kowtko J, McFarland D M, Bergman L, Vakakis A. Theoretical and experimental study ofmuhimodal targeted energy transfer in a system of coupled oscillators[ J]. Nonlinear Dynamics, 2007, 47 ( 1 ) : 285 - 309.

共引文献39

同被引文献4

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部