期刊文献+

朗伯定律的宽观测带SAR海冰图像分割 被引量:1

Wide-swath SAR ice images segmentation based on Lambert's law
下载PDF
导出
摘要 入射角效应是宽观测带SAR海冰图像分割的主要障碍之一。基于宽观测带SAR海冰图像数据,提出了一种集成余弦朗伯定律的分割算法。为了提高分割算法对SAR海冰图像的适应性,充分考虑了斑点噪声和入射角效应因素,并在区域K-means聚类、朗伯定律校正之后,进行区域合并。分别针对合成SAR海冰图像和星载SAR海冰图像的实验结果表明,该算法可有效提高分割的准确性。 Incidence angle effect of the SAR images is a major obstacle to the automatic interpretation of SAR sea ice image. Based on wide-swath SAR ice data, this paper proposes a new segmentation algorithm which integrates Lambert’s law correction step. The segmentation algorithm considers the effects of speckle noise and the angle of incidence of factors. The Lambert’s law correction and region merging will be combined. The efficiency of the proposed method has been demonstrated on the segmentation of synthetic SAR sea ice image and gulf of Bothnia SAR sea ice image, where the segmentation accuracy has been substantially improved in contrast to area-based Markov random field(MRF) algorithm.
作者 赵庆平
出处 《国土资源遥感》 CSCD 北大核心 2017年第2期67-71,共5页 Remote Sensing for Land & Resources
基金 安徽省高校自然科学研究重点项目"距离相校正的SAR海冰图像自动分割研究"(编号:KJ2016A650)资助
关键词 入射角效应 余弦朗伯定律 宽观测带 海冰 图像分割 incident angle effect Lambert’s cosine law wide-swath sea ice image segmentation
  • 相关文献

参考文献1

二级参考文献50

  • 1Zhou W T,Song C Z.Image segmentation by data-driven markov chain monte carlo[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):657 ~673.
  • 2Bouman C A,Shapiro M.A multiscale random field model for Bayesian image segmentation[J].IEEE Transactions on Image Processing,1994,3(2):162 ~177.
  • 3Kam A H,Fitzgerald W J.General unsupervised multiscale segmentation of images[A].In:Proceedings of Conference Record of the Thirty-third Asilomar on Signals,Systems,and Computers[C],Pacific Grove,CA,USA,1999,1:63~67.
  • 4Laferte J M,Perez P,Heitz F.Discrete Markov image modeling and inference on the quadtree[J].IEEE Transactions on Image Processing,2000,9(3):390 ~404.
  • 5Choi H,Baraniuk R G.Multiscale image segmentation using waveletdomain hidden markov models[J].IEEE Transactions on Image Processing,2001,10(9):1309 ~ 1321.
  • 6Sun J,Gu D,Zhang S,et al.Hidden markov bayesian texture segmentation using complex wavelet transform[J].IEE Proceedings Vision,Image and Signal Processing,2004,151(3):215 ~223.
  • 7Fan Guo-liang,Xia Xiang-gen.A joint multicontext and multiscale approach to Bayesian image segmentation[J].IEEE Tansactions on Geoscience and Remote Sensing,2001,39(12):2680 ~2688.
  • 8Srinivas C,Srinath M D.Compound Gauss Markov random field model for image segmentation and restoration[J].Acoustics,Speech,and Signal Processing,1989,3(23):1586 ~1589.
  • 9Zhang Y,Brady M,Smith S.Segmentation of Brain MR images through a hidden Markov random field model and the expectation maximization algorithm[J].IEEE Transactions on Medical Imaging,2001,20(1):45 ~47.
  • 10Wang J P.Stochnstic relaxation on partitions with connected components and its application to image segmentation[J].IEEE Transactions on Pattern anAlysis and Machine Intelligence,1998,20(6):619 ~636.

共引文献63

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部