期刊文献+

无先验参考的脑电信号伪迹去除方法 被引量:1

An Artefact Removal Method for EEG Without Reference Channel
下载PDF
导出
摘要 在深入分析脑电信号各伪迹成分特征的基础上,结合传统滤波方法,提出了一种不需要眼电信号参考的脑电信号伪迹去除方法。脑电信号原始数据可视作由纯净脑电信号、环境噪声、动作杂波及人体自身伪迹成分所构成的混合信号,利用传统滤波方法去除环境噪声及动作杂波,结合盲源分离算法提取人体自身伪迹成分并完成伪迹成分自动识别与去除以及纯净脑电信号的重构工作,以实现纯净脑电信号有效提取过程。经实验验证,该无先验参考的脑电信号伪迹去除方法切实可行,可有效去除伪迹,提高脑电信号信噪比。 Focusing on the problems that original EEG data has low signal-to-noise ratio and great number of artifacts,as well as some EEG acquisition equipment are not installed with EOG epoch,this paper put forward a new artifacts removal method for EEG without EOG reference,which combined with the traditional filtering method and was based on an in-depth analysis of artifacts' feature.The original EEG data could be regarded as a mixture of pure EEG,environmental noise,motion activity,and body artifacts.The environmental noise and motion activities could be removed by traditional filtering method;the body artifacts could be extracted by blind source separation method.After automatic identification,removal and reconstruction work,pure EEG extraction was realized.Experimental results showed that the proposed method was feasible and effective,and could effectively remove artifacts and improve the signal to noise ratio of EEG signals.
出处 《机械与电子》 2017年第4期75-80,共6页 Machinery & Electronics
关键词 脑电信号 信号处理 伪迹去除 electroencephalogram signal processing artifacts removal
  • 相关文献

参考文献3

二级参考文献30

  • 1李广彪,张剑云.基于负熵最大化FastICA算法的雷达信号分选[J].舰船电子对抗,2005,28(3):23-28. 被引量:12
  • 2官金安,陈亚光.相干平均单次提取脑-机接口信号[J].华中科技大学学报(自然科学版),2007,35(1):11-13. 被引量:4
  • 3李文娟,郭晓静,吴小培.结合ICA和PCA方法的胎儿心电提取[J].计算机技术与发展,2007,17(8):223-225. 被引量:6
  • 4史习智.盲信号处理[M].上海:上海交通大学出版社,2008.
  • 5Hyvarinen A, Karhunen J, Oja E. Independent Component Analysis [ M ]. San Diego : A Wiley - Interscience Publication, 2001.
  • 6Boscolo R. Independent Component Analysis Based on Nonparametric Density Estimation [J]. IEEE Trans, 2004, 15 ( 1 ) :55-65.
  • 7Langlois D, Chartier S, Gosselin D. An Introduction to Independent Component Analysis: InfoMax and FastICA Algorithms[ J]. Tutorials in Quantitative Methods for Psychology, 2010,6( 1 ) :31-38.
  • 8Behera S K. Fast ICA for Blind Source Separation and Its Implementation [ D ]. [ s.l. ] : National Institute of Technology, 2009.
  • 9Tichavsky P. Performance Analysis of the FastICA Algorithm and Cramer - Rao Bounds for Linear Independent Component Analysis [ J ]. IEEE Trans,2006,54 (4) : 1189 - 1203.
  • 10PRICE J L, DREVETS W C. Neurocircuitry of mood disorders[J].Neuropsychopharmacology, 2010, 35(1): 192-216.

共引文献47

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部