期刊文献+

基于遗传算法的高速轴承油膜稳定性能优化 被引量:2

Optimization of High Speed Bearing for Improvement of the Oil Film Stability Performance Based on Genetic Algorithms
原文传递
导出
摘要 针对液体滑动轴承由于高速化导致的主轴稳定性能下降的问题,提出了基于遗传算法的高速轴承油膜稳定性能的优化方法。该方法首先采用动网格方法对主轴轴心轨迹进行计算分析,并对计算得到的稳态椭圆涡动轨迹用最小二乘法进行圆拟合。然后将得到的拟合圆半径作为优化目标,轴承参数作为优化变量,建立高速轴承油膜稳定性能优化模型,并采用遗传算法对其进行求解。最后通过对工程实例的求解验证了本文方法可有效地提高高速轴承油膜的稳定性能。 An optimization method based on genetic algorithms is suggested to improve the: oil film stability performance of high speed bearings, which may be degraded by the high speed. Firstly, the moving mesh method was used to calculate the trajectory of the spindle. Secondly, the obtained steady elliptic vortex trajectory was circle fitted by the least square method. After that, genetic algorithms were used to optimization problem of the high speed bearing for minimizing the radius of the fitting circle. Eventually, this method was used to the optimization of a high speed bearing. Numerical results have demonstrated that it can effectively improve the oil film stability performance.
作者 刘桂萍 齐毅
出处 《机械设计与研究》 CSCD 北大核心 2017年第2期61-64,共4页 Machine Design And Research
基金 国家自然科学基金资助项目(11202073)
关键词 高速轴承 优化 油膜稳定性能 遗传算法 high speed bearing optimization oil film stability performance genetic algorithm
  • 相关文献

参考文献4

二级参考文献45

  • 1李强,郑水英,刘淑莲.计入JFO边界条件的滑动轴承性能分析[J].机械强度,2010,32(2):270-274. 被引量:25
  • 2李树森,刘暾.精密离心机静压气体轴承主轴系统的动力学特性分析[J].机械工程学报,2005,41(2):28-32. 被引量:24
  • 3王慧,马玉真.螺旋油楔动压轴承的优化设计[J].山东建材学院学报,1996,10(1):37-42. 被引量:4
  • 4SIMPSON T W, TOROPOV V, BALABANOV V, et al.Design and analysis of computer experiments in multidisciplinary design optimization: A review of how far we have come-or not[C]// 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, September 10-12, 2008, Victoria, British Columbia Canada. 2008: 1-21.
  • 5SIMPSON T W, BOOKER A J, GHOSH D, et al. Approximation methods in multidisciplinary analysis and optimization: A panel discussion[J]. Struct. Multidisc. Optim., 2004, 27: 302-313.
  • 6JIN R, CHEN W, SIMPSON T W. Comparative studies of metamodeling techniques under multiple modeling critieria[J]. Struct. Multidisc. Optim., 2001, 23: 1-13.
  • 7GUTMANN H M. A radial basis function method for global optimization[J]. Journal of Global Optimization, 2001, 19: 201-227.
  • 8MULLUR A A, MESSAC A, Extended radial basis functions: More flexible and effective metamodeling[J]. AIAAJournal, 2005, 43(6): 1306-1315.
  • 9MECKESHEIMER M, BARTON R R, SIMPSON T. Metamodeling of combined discrete/continuous responses [J]. AIAA Journal, 2001, 39(10): 1950-1959.
  • 10YOUNG A, CAOChengyu, PATELV, etal. Adaptive control design methodology for nonlinearin control systems in aircraft applications[J]. Journal of Guidance, Control and Dynamics, 2007, 30(6): 1770-1782.

共引文献86

同被引文献18

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部