期刊文献+

Recent progress of the native defects and p-type doping of zinc oxide 被引量:2

Recent progress of the native defects and p-type doping of zinc oxide
下载PDF
导出
摘要 Zinc oxide(ZnO) is a compound semiconductor with a direct band gap and high exciton binding energy.The unique property,i.e.,high efficient light emission at ultraviolet band,makes ZnO potentially applied to the short-wavelength light emitting devices.However,efficient p-type doping is extremely hard for ZnO.Due to the wide band gap and low valence band energy,the self-compensation from donors and high ionization energy of acceptors are the two main problems hindering the enhancement of free hole concentration.Native defects in ZnO can be divided into donor-like and acceptorlike ones.The self-compensation has been found mainly to originate from zinc interstitial and oxygen vacancy related donors.While the acceptor-like defect,zinc vacancy,is thought to be linked to complex shallow acceptors in group-VA doped ZnO.Therefore,the understanding of the behaviors of the native defects is critical to the realization of high-efficient p-type conduction.Meanwhile,some novel ideas have been extensively proposed,like double-acceptor co-doping,acceptor doping in iso-valent element alloyed ZnO,etc.,and have opened new directions for p-type doping.Some of the approaches have been positively judged.In this article,we thus review the recent(2011-now) research progress of the native defects and p-type doping approaches globally.We hope to provide a comprehensive overview and describe a complete picture of the research status of the p-type doping in ZnO for the reference of the researchers in a similar area. Zinc oxide(ZnO) is a compound semiconductor with a direct band gap and high exciton binding energy.The unique property,i.e.,high efficient light emission at ultraviolet band,makes ZnO potentially applied to the short-wavelength light emitting devices.However,efficient p-type doping is extremely hard for ZnO.Due to the wide band gap and low valence band energy,the self-compensation from donors and high ionization energy of acceptors are the two main problems hindering the enhancement of free hole concentration.Native defects in ZnO can be divided into donor-like and acceptorlike ones.The self-compensation has been found mainly to originate from zinc interstitial and oxygen vacancy related donors.While the acceptor-like defect,zinc vacancy,is thought to be linked to complex shallow acceptors in group-VA doped ZnO.Therefore,the understanding of the behaviors of the native defects is critical to the realization of high-efficient p-type conduction.Meanwhile,some novel ideas have been extensively proposed,like double-acceptor co-doping,acceptor doping in iso-valent element alloyed ZnO,etc.,and have opened new directions for p-type doping.Some of the approaches have been positively judged.In this article,we thus review the recent(2011-now) research progress of the native defects and p-type doping approaches globally.We hope to provide a comprehensive overview and describe a complete picture of the research status of the p-type doping in ZnO for the reference of the researchers in a similar area.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第4期27-49,共23页 中国物理B(英文版)
基金 Project supported by the State Key Program for Basic Research of China(Grant No.2011CB302003) the National Natural Science Foundation of China(Grant Nos.61274058,61322403,61504057,and 61574075) the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20130013 and BK20150585) the Six Talent Peaks Project in Jiangsu Province,China(Grant No.2014XXRJ001)
关键词 zinc oxide native defects p-type doping ACCEPTOR zinc oxide native defects p-type doping acceptor
  • 相关文献

同被引文献4

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部