期刊文献+

(λ,μ)-模糊商环及其同构定理

(λ,μ)-Fuzzy Quotient Ring and Isomorphism Theorem
下载PDF
导出
摘要 在(λ,μ)-模糊子环与(λ,μ)-模糊理想概念的基础上,讨论了(λ,μ)-模糊商环与(λ,μ)-商模糊子环的若干性质,最后建立了(λ,μ)-模糊商环的同构定理. Based on the concept of (λ,μ)-fuzzy subring and(A -fuzzy ideal , seveal propert ies of (λ,μ)-fuzzy quotient ring and(λ,μ)-quotient fuzzy subring were discussed. Finally, the isomorphism theo-rems for (λ,μ) -fuzzy quotient rings were established.
出处 《聊城大学学报(自然科学版)》 2017年第1期18-21,26,共5页 Journal of Liaocheng University:Natural Science Edition
基金 国家自然科学基金项目(11471152)资助
关键词 μ)-模糊子环 μ)-模糊理 μ)-模糊商环 μ)-商模 糊子环 同构定理 (λ,μ)-fuzzy subring (λ,μ)-fuzzy ideal (λ,μ)-fuzzy quotient ring,(λ,μ)-quotient fuzzy subring isomorphism theorems
  • 相关文献

参考文献1

二级参考文献8

  • 1吴望名.正规模糊子群[J].模糊数学,1981,1:21-30.
  • 2Zadeh L A. Fuzzy sets[J]. Information and Control,1965,8:338-351.
  • 3Rosenfeld A. Fuzzy groups[J]. J. Math. Anal. Appl. ,1971,35:512-517.
  • 4Bhakat S K, Das P. (E , E Vq)-fuzzy subgroup[J]. Fuzzy Sets and Systems,1996,80:359-368.
  • 5Yuan X, Zhang C, Ren Y. Generalized fuzzy groups and many-valued implications [J]. Fuzzy Sets and Systems,2003,138z205-211.
  • 6Yao B. (2,)-fuzzy normal subgroups and (2,)-fuzzy quotient subgroups[J]. The Journal of Fuzzy Mathematics, 2005,13:695-705.
  • 7祝令江,姚炳学,吴宝增.(λ,μ]-商模糊子群[J].鲁东大学学报(自然科学版),2008,24(2):108-110. 被引量:5
  • 8姚炳学.群的模糊同态与模糊商群的同构定理[J].模糊系统与数学,2001,15(3):5-9. 被引量:14

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部