期刊文献+

基于双高斯空间模型的人脑MRI分割方法

A Brain MR Image Segmentation Method Based on Dual Gaussian Spatial Model
下载PDF
导出
摘要 针对传统的基于高斯混合模型的分割方法由于忽略了空间信息和高斯模型间的线性组合导致对强噪声或边缘模糊的人脑MRI的分割效果并不理想的缺点,运用双高斯空间模型来对人脑MRI进行分割。由于双高斯空间模型拥有优良的空间相关性,能够很好的对脑部MRI纹理和边缘进行有效划分;因为人脑MRI的灰度分布呈现高斯分布特征,用双高斯空间模型对人脑MRI建模能够很好的符合人脑MRI的灰度分布特点;同时高斯权重置信度的指数结构以及平滑系数的引入使得分割鲁棒性大大增强;运用梯度下降法对双高斯空间模型的平滑系数进行求解,根据最大后验概率准则得到图像的最终分割结果。实验结果表明,该方法对人脑MRI具有很好的分割结果,同时鲁棒性与抗噪性能大大增强。 Due to the neglect of the neighborhood information,the traditional segmentation method based on Gaussian model is not ideal for the segmentation of the human brain MRI which contains the strong noise or the edge blurring.Since the excellent spatial correlation of dual Gaussian Spatial model,it can segment brain MRI textures and edges effectively.At the same time,the grey level distribution of the human brain MRI presents the characteristics of Gaussian distribution,so the dual Gaussian spatial model can be very good in accordance with the characteristics of the grey level distribution.Gradient descent method is used to solve the smoothing factor of the model,and finally the segmentation results are obtained according to the maximum a posteriori(MAP)criterion.The experimental result has shown that the method proposed has good segmentation effects for human brain MRI and robustness and anti noise ability is greatly enhanced.
出处 《青岛大学学报(自然科学版)》 CAS 2017年第1期66-72,共7页 Journal of Qingdao University(Natural Science Edition)
基金 云南省科技厅面上项目(批准号:2005F0025M)资助 昆明理工大学人才培养基金项目(批准号:KKZ3201339035)资助
关键词 人脑MRI 空间信息 双高斯空间模型 梯度下降法 human brain MRI spatial information Dual Gaussian Spatial Model gradient descent method
  • 相关文献

参考文献3

二级参考文献48

  • 1刘扬,黄庆明,高文,叶齐祥.自适应高斯混合模型球场检测算法及其在体育视频分析中的应用[J].计算机研究与发展,2006,43(7):1207-1215. 被引量:18
  • 2章毓晋.图像工程(上册)图像处理和分析[M].北京:清华大学出版社,1999.181-186.
  • 3M. Luo, Y. F. Ma, H. J. Zhang. Pyramid wise structuring for soccer highlight extraction [C]. IEEE Pacific-Rim Conf.Multimedia, Singapore, 2003
  • 4A. Ekin, A. M. Tekalp. Robust dominant color detection and color-based application for sports video [C]. IEEE Int'l Conf.Image Processing, Barcelona, Spain, 2003
  • 5S. Q. Jiang, Q. X. Ye, W. Gao. A new method to segment playfield and its applications in match analysis in sports video [C].ACM Multimedia, New York, NY, 2004
  • 6L. Wang, B. Y. Zeng, S. Lin, et al. Automatic extraction of semantic colors in sports video [C]. IEEE Int'l Conf. Acoustics,Speech, and Signal Processing, Quebec, Canada, 2004
  • 7L. X. Xie, P. Xu, S. -F. Chang, et al. Structure analysis of soccer video with domain knowledge and hidden markov models[J]. Pattern Recognition Letters, 2004, 25(7): 767-775
  • 8P. Xu, L. Xie, S. F. Chang, et al. Algorithms and systems for segmentation and structure analysis in soccer video [C]. IEEE Int'l Conf. Multimedia and Expo, Tokyo, Japan, 2001
  • 9A. Ekin, A. M. Tekalp. Shot type classification by dominant color for sports video segmentation and summarization [C]. IEEE Int'l Conf. Acoustics, Speech, and Signal Processing, Hong Kong, 2003
  • 10O. Utsumi, K. Miura, I. Ide, et al. An object detection method for describing soccer games from video [C]. IEEE Int'l Conf.Multimedia and Expo, Lausanne, Switzerland, 2002

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部