期刊文献+

Research on Variable Structure and Adaptive Control for Strap-on Rocket

Research on Variable Structure and Adaptive Control for Strap-on Rocket
下载PDF
导出
摘要 Considering the increase of structural disturbance caused by large thrust misalignment and lack of synchronism after installation of the solid booster on the rock,as well as the increase of external disturbance resulting from the installation of the configuration and tail,while also considering the parameter uncertainties,parameter perturbations,unmodeled dynamics and coupling between channels during modeling,this paper proposes the design method for the adaptive control of sliding mode variable structure,based on the model reference. The paper firstly establishes the attitude dynamics model for the solid strap-on launch vehicle; then proposes the design method for the adaptive control of the sliding mode variable structure based on the model reference,implements the design of attitude control system for the three channels respectively,and uses the Lyapunov function to prove the global asymptotic stability; and finally verifies,through numerical simulation,that the control method proposed in this paper can guarantee the attitude stability of rockets in the primary flight phase. Considering the increase of structural disturbance caused by large thrust misalignment and lack of synchronism after installation of the solid booster on the rock, as well as the increase of external disturbance resulting from the installation of the configuration and tai l , while also considering the parameter uncertainties, parameter perturbations, unmodeled dynamics and coupling between channels during modeling, this paper proposes the design method for the adaptive control of sliding mode variable structure, based on the model reference. The paper firstly establishes the attitude dynamics model for the solid strap-on launch vehicle; then proposes the design method for the adaptive control of the sliding mode variable structure based on the model reference, implements the design of attitude control system for the three channels respectively, and uses the Lyapunov function to prove the global asymptotic stability; and finally verifies, through numerical simulation, that the control method proposed in this paper can guarantee the attitude stability of rockets in the primary flight phase.
出处 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2017年第2期87-96,共10页 哈尔滨工业大学学报(英文版)
关键词 launch vehicle model reference variable structure control adaptive control launch vehicle model reference variable structure control adaptive control
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部