期刊文献+

基于点密度采样的建筑物点云立面分割方法

Building Facade Segmentation Method Based on the Point Density Sampling
下载PDF
导出
摘要 由于地面激光扫描仪扫描时常存在死角,导致点云缺失、密度不均匀等问题,使得建筑物立面难以完整分割,为点云后续三维重建带来了很大的困难。提出了一种基于点密度的指导采样方式,并对提取的模型进行再优化的分割算法,即GSMOSAC(global sample and model optimize sampling and consensus)算法。该算法改进了最小采样集的选取方式,并对采样模型进行优化处理,以提高所提取模型的可靠性。针对三种不同类型的激光雷达点云数据的实验结果表明,该算法的分割效果比传统的RANSAC算法和多结构(Multi-GS)算法都更好。 Since terrestrial laser scanner exists scanning corner which may lead to problems such as lac-king of point cloud and uneven density, it is hard to complete segmentation of building facade and brings great difficulty for sequent 3D reconstruction. There exist a lot of algorithms related to building facade segmentation based LiDAR point cloud datas. RANSAC and Mutil-GS have obvious advantage in sampling strategy among these algorithms in the literature, but there exists shortcomings for model selection and subsequent optimiza-tion. Based on a guidance of sampling point density and optimizing the extracted model, this paper puts for-ward a Global Sample and Model Optimization Sampling and Consensus (GSMOSAC) algorithm. Comparing with the traditional RANSAC and Mutil-GS, the algorithm obtains a better segmentation quality in the light of the experiment results under three types of LiDAR point cloud datas.
出处 《集美大学学报(自然科学版)》 CAS 2017年第2期57-65,共9页 Journal of Jimei University:Natural Science
基金 国家自然科学基金项目(612021433 41201462) 国家科技支撑计划项目(201309110001) 国家863项目子课题(2012AA12A208-06) 国家博士后基金项目(2014M561090) 福建省自然科学基金项目(2013J01245) 福建省科技厅专项(JK2012025) 福建省科技计划项目(2014H0034)
关键词 激光雷达点云 GSMOSAC算法 立面分割 点密度 LiDAR point clouds GSMOSAC (global sample and model optimize sampling and consen-sus) method facade segmentation point density
  • 相关文献

参考文献3

二级参考文献39

  • 1贾静平,赵荣椿.使用Mean Shift进行自适应序列图像目标跟踪[J].计算机应用研究,2005,22(2):247-249. 被引量:5
  • 2钱锦锋,陈志杨,张三元,叶修梓.点云数据压缩中的边界特征检测[J].中国图象图形学报(A辑),2005,10(2):164-169. 被引量:39
  • 3罗德安,朱光,陆立,廖丽琼.基于3维激光影像扫描技术的整体变形监测[J].测绘通报,2005(7):40-42. 被引量:154
  • 4张贤达.矩阵分析与应用[M].北京:清华大学出版社,2008:268-271.
  • 5Vosselman G, Kessels P, Gorte B.The utilisation of airborne laser scanning for mapping[J].Intemational Journal of Applied Earth Observation and Geoinformation, 2005,6(3/4) : 177-186.
  • 6Filin S.Surface classification from airborne laser scanning data[J]. Computers and Geosciences, 2004,30(9/10) : 1033-1041.
  • 7Filin S.Surfaee clustering from airborne laser scanning data[J]. International Archives of Photogrammetry Remote Sewing and Spatial Information Sciences,2002,34(3) : 119-124.
  • 8Filin S,Pfeifer N.Segmentation of airborne laser scanning data using a slope adaptive neighborhood[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2006,60(2) : 71-80.
  • 9Biosca J, Lerma J.Unsupervised robust planar segmentation of terrestrial laser scanner point clouds based on fuzzy clustering methods[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2008,63 ( 1 ) : 84-98.
  • 10Comaniciu D, Ramesh V, Meer P.The variable bandwidth mean shift and data-driven scale selection[C]//Proceedings of the International Conference on Computer Vision, 2001 : 438-445.

共引文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部