摘要
由于地面激光扫描仪扫描时常存在死角,导致点云缺失、密度不均匀等问题,使得建筑物立面难以完整分割,为点云后续三维重建带来了很大的困难。提出了一种基于点密度的指导采样方式,并对提取的模型进行再优化的分割算法,即GSMOSAC(global sample and model optimize sampling and consensus)算法。该算法改进了最小采样集的选取方式,并对采样模型进行优化处理,以提高所提取模型的可靠性。针对三种不同类型的激光雷达点云数据的实验结果表明,该算法的分割效果比传统的RANSAC算法和多结构(Multi-GS)算法都更好。
Since terrestrial laser scanner exists scanning corner which may lead to problems such as lac-king of point cloud and uneven density, it is hard to complete segmentation of building facade and brings great difficulty for sequent 3D reconstruction. There exist a lot of algorithms related to building facade segmentation based LiDAR point cloud datas. RANSAC and Mutil-GS have obvious advantage in sampling strategy among these algorithms in the literature, but there exists shortcomings for model selection and subsequent optimiza-tion. Based on a guidance of sampling point density and optimizing the extracted model, this paper puts for-ward a Global Sample and Model Optimization Sampling and Consensus (GSMOSAC) algorithm. Comparing with the traditional RANSAC and Mutil-GS, the algorithm obtains a better segmentation quality in the light of the experiment results under three types of LiDAR point cloud datas.
出处
《集美大学学报(自然科学版)》
CAS
2017年第2期57-65,共9页
Journal of Jimei University:Natural Science
基金
国家自然科学基金项目(612021433
41201462)
国家科技支撑计划项目(201309110001)
国家863项目子课题(2012AA12A208-06)
国家博士后基金项目(2014M561090)
福建省自然科学基金项目(2013J01245)
福建省科技厅专项(JK2012025)
福建省科技计划项目(2014H0034)
关键词
激光雷达点云
GSMOSAC算法
立面分割
点密度
LiDAR point clouds
GSMOSAC (global sample and model optimize sampling and consen-sus) method
facade segmentation
point density