摘要
在Sato理论的框架下,利用拟微分算子探讨了1+1维带源可积方程族之间的Bcklund变换,构造了带源Kd V方程与带源mKdV方程、带源mKdV方程和带源Harry Dym方程之间的Bcklund变换,结果表明,在所构造的Bcklund变换作用下,第一(二)型标准的带源KdV、mKdV方程分别变换成非标准的第一(二)型的带源mKdV、Harry Dym方程。
Backlund transformations between 1+1 dimensional integrable hierarchies by the pseudo-dif-ferential operator in the framework of Sato theory are discussed. Backlund transformation between KdV equa-tion with self-consistent sources (with sources) and mKdV equation with sources, mKdV equation with sources and Harry Dym equation with sources are given, respectively. The results show that under the Backlund transformation, the first (two) standard type of KdV, mKdV equation with sources are transformed into the first (two) non-standard type of mKdV, Harry Dym equation with sources, respectively.
出处
《集美大学学报(自然科学版)》
CAS
2017年第2期66-74,共9页
Journal of Jimei University:Natural Science
基金
国家自然科学基金项目(11201178)
福建省自然科学基金项目(2017J01402)
福建省教育厅高校青年自然基金重点项目