期刊文献+

应变能最小的保形有理四次样条插值曲线

Shape Preserving Rational Quartic Spline Interpolation Curve of Minimum Strain Energy
下载PDF
导出
摘要 为构造光顺的保形有理四次样条插值曲线,以形状控制参数和插值函数在节点处的导数为决策变量,以插值曲线应变能最小为目标函数,以插值函数保形以及形状控制参数和节点处的导数大于0作为约束条件,建立优化模型,求解获得应变能最小的保形有理四次样条插值曲线。给出的数值实例表明新方法能获得光顺的插值曲线。 In order to obtain the most fairing shape preserving rational quartic spline interpolation curve, an optimization model is established,with the shape control parameters and the derivative of the interpolation function at the nodes being decision variables, the minimum strain energy of the interpolation curve being the objective function,and the interpolation function for monotony as well as the shape control parameters and the derivative of the node greater than zero being the constraint conditions.The shape preserving rational quartic spline interpolation curve with minimum strain energy is obtained based on the optimization model.The numerical ex-amples are given to show that the new method can obtain fairing interpolation curve.
作者 张澜 赵前进
出处 《渭南师范学院学报》 2017年第8期16-20,共5页 Journal of Weinan Normal University
基金 国家自然科学基金项目:有理插值新方法及其在三维数字模型信息保护中的应用研究(60973050) 安徽省教育厅自然科学基金项目:有理插值新方法及其应用研究(KJ2009A50)
关键词 有理四次样条插值 保形 应变能 最优化 rational quartic spline interpolation shape preserving strain energy optimization
  • 相关文献

参考文献5

二级参考文献44

  • 1谢楠,张晓平.一类有理三次样条的区域控制和逼近性质[J].山东大学学报(工学版),2004,34(6):106-111. 被引量:8
  • 2张希华,包芳勋,刘爱奎,段奇.一种有理插值曲线的保凸控制问题[J].工程图学学报,2005,26(2):77-82. 被引量:8
  • 3闵杰,陈邦考.一种四次有理插值样条及其逼近性质[J].高等学校计算数学学报,2007,29(1):57-62. 被引量:12
  • 4Sarfraz M. Rational spline interpolation preserving the shape of the monotonic data. In: Proceedings of the Computer Graphics International'97. Belgium:IEEE Computer Society, 1997: 238-244.
  • 5Duan Qi. Weighted rational cubic spline interpolation and its approximation[J]. Computational and Applied Mathematics, 2000, 117(2): 121-135.
  • 6Schabach R. Spezielle rational spline function[J]. Journal of Approximation Theory, 1973, 7(1): 281-292.
  • 7Schumaker L L. Spline Functions: Basic Theory. New York: Wiley Inter science, 1981.
  • 8Muehlbach G. On interpolation by rational functions with prescribed poles with applications to multivariate interpolation[J]. J.Comput. Appl. Math., 1990, 32(4): 203-216.
  • 9Delbourgo R, Gregory J A. Shape preserving piecewise rational interpolation[J]. SIAM J. SCI. SIAT. Comput., 1985, 6: 967-976.
  • 10Qi.Duan,K.Djidjeli, W.O.Price and E. H. Twizell. A rational cubic spline based on function values[J]. Comput& Graphics, 1998, 22: 479-486.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部