期刊文献+

Analytical analysis for vibration of longitudinally moving plate submerged in infinite liquid domain 被引量:1

Analytical analysis for vibration of longitudinally moving plate submerged in infinite liquid domain
下载PDF
导出
摘要 The vibration of a longitudinally moving rectangular plate submersed in an infinite liquid domain is studied analytically with the Rayleigh-Ritz method. The liquid is assumed to be incompressible, inviscid, and irrotational, and the velocity potential is used to describe the fluid velocity in the whole liquid field. The classical thin plate theory is used to derive mechanical energies of the traveling plate. As derivative of transverse displacement with respect to time in the compatibility condition equation exists, an exponential function is introduced to depict the dynamic deformation of the moving plate. It is shown that this exponential function works well with the Rayleigh- Ritz method. A convergence study shows a quick convergence speed for the immersed moving plate. Furthermore, the parametric study is carried out to demonstrate the effect of system parameters including the moving speed, the plate location, the liquid depth, the plate-liquid ratio, and the boundary condition. Results show that the above system parameters have significant influence on the vibration characteristics of the immersed moving plate. To extend the study, the method of added virtual mass incremental (AVMI) factor is used. The results show good agreement with those from the Rayleigh-Ritz method. The vibration of a longitudinally moving rectangular plate submersed in an infinite liquid domain is studied analytically with the Rayleigh-Ritz method. The liquid is assumed to be incompressible, inviscid, and irrotational, and the velocity potential is used to describe the fluid velocity in the whole liquid field. The classical thin plate theory is used to derive mechanical energies of the traveling plate. As derivative of transverse displacement with respect to time in the compatibility condition equation exists, an exponential function is introduced to depict the dynamic deformation of the moving plate. It is shown that this exponential function works well with the Rayleigh- Ritz method. A convergence study shows a quick convergence speed for the immersed moving plate. Furthermore, the parametric study is carried out to demonstrate the effect of system parameters including the moving speed, the plate location, the liquid depth, the plate-liquid ratio, and the boundary condition. Results show that the above system parameters have significant influence on the vibration characteristics of the immersed moving plate. To extend the study, the method of added virtual mass incremental (AVMI) factor is used. The results show good agreement with those from the Rayleigh-Ritz method.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第5期625-646,共22页 应用数学和力学(英文版)
基金 Project supported by the National Natural Science Foundation of China(Nos.11302046 and 11672071) the Fundamental Research Funds for the Central Universities(No.N150504003)
关键词 longitudinally moving plate fluid-structure interaction Rayleigh-Ritz method free vibration added virtual mass incremental (AVMI) factor method longitudinally moving plate, fluid-structure interaction, Rayleigh-Ritz method, free vibration, added virtual mass incremental (AVMI) factor method
  • 相关文献

同被引文献22

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部