期刊文献+

一类具交错扩散的互惠模型的共存解

The Coexistence of a System Describing a Mutualistic Model and with Cross-Diffusions
原文传递
导出
摘要 研究了Dirichlet边界条件下具交错扩散的两种群互惠模型.采用上下解方法,结合Schauder不动点理论,给出了问题共存解存在的充分条件.进一步,利用单调迭代序列的方法构造出问题的共存解.结果表明,当交错扩散相对弱时,问题至少存在一共存解. This paper deals with a two-species mutualistic model with cross-diffusions under Dirichlet conditions. With the method of upper and lower solutions and fixed point theorem, the conditions of the existence of coexistence solutions to the above system are gived. Furthermore, by making use of its associated monotone iterations, the coexistence solutions of this system are constructed. Our results show that the system possesses at least one coexistence state if cross-diffusions are weak.
作者 甘文珍 袁樱
出处 《数学的实践与认识》 北大核心 2017年第6期215-220,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金青年基金(11102076 11201406)
关键词 互惠模型 交错扩散 上下解 单调迭代序列 共存解 mutualistic model cross-diffusions upper and lower solutions monotone iteration coexistence
  • 相关文献

参考文献1

二级参考文献12

  • 1Aziz-alaout M, Okiye M. Boundedness and Global Stability for a Predator-prey Model with Modified Leslie-Gower and Holling-type Ⅱ Schemes. Appl. Math. Lett., 2003, 16:1069-1075.
  • 2Rai B, Wrawcewicz W. Hopf Bifurcation in Symmetric Configuration of Predator-prey-mutualist System. Nonlinear Analysis: TMA, 2009, 71:4279-4296.
  • 3Duber B, Hussain B. A Predator-prey Interaction Model with Self- and cross-diffusion. Ecological Modelling, 2001, 141(1): 67-76.
  • 4Hei L. Global Bifurcation of Coexistence States for a Predator-prey-mutualist Model with Diffusion. Nonlinear Analysis: RWA, 2007, 8:619-635.
  • 5Amann H. Dynamic Theory of Quasilinear Parabolic Equations-Ⅰ.Abstract Evolution Equations. Nonlinear Analysis, 1988, 12(9): 895-919.
  • 6Amann H. Dynamic Theory of Quasilinear Parabolic Equations-Ⅱ. Reaction-diffusion. Diff. Int. Eqs., 1990, 3(1): 13-75.
  • 7Amann H. Dynamic Theory of Quasilinear Parabolic Equations-Ⅲ. Global Existence. Math. Z., 1989, 202(2): 219-250.
  • 8Ladyzenskaya O, Solonikov V, Uralcera N. Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs, 23, AMS, Providence: Rhode Island, 1968.
  • 9Phan V. On Global Existence of Solutions to a Cross-diffusion System. J. Math. Anal. Appl., 2008, 343(2): 826-834.
  • 10Choi Y, Lui R, Yamada Y. Existence of Global Solutions for the Shigesada-Kawaski-Teramoto Model with Strongly Coupled Cross-diffusion. Discrete Contin. Dynam. Systems, 2004, 10:719-730.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部