期刊文献+

基于Takagi-Sugeno模糊神经网络的电子差速控制系统 被引量:2

Electronic Differential Control System Based on Takagi-Sugeno Fuzzy Neural Network
下载PDF
导出
摘要 由轮毂电机驱动的电动汽车可以实现对驱动轮的独立控制,因此在提高其灵活性的同时,也对电机控制系统提出了更高的要求。以Takagi-Sugeno模糊神经网络理论为基础,研究了用于驱动双轮毂电机的电子差速控制系统。在MATLAB中构建了电子差速控制系统的Simulink仿真模型,把仿真结果与实际道路试验进行比较,以验证设计的正确性。结果表明,其控制系统能够实现在转向时两个驱动轮的差速旋转,两个轮毂电机的转速符合Ackerman-Jeantand转向模型对两个后轮转速的要求,误差控制在设计要求以内。 Independent control on wheel could be achieved in the electric vehicles driven by hub motors, which increased the flexibility of the vehicles as well as the requirement for motor control system. On the basis of the Takagi- Sugeno fuzzy neural network theory, the electronic differential control system driven by two hub motors was discussed. Compared the Simulink model of electronic differential control system built by MATLAB with actual road test, the feasibility of this design could be verified. The result indicated that differential rotation could be realized by this control system when steering. The rotating speed of the two hub motors met the requirement of Ackerman-Jeantand steering model and the error was controlled within the range of design.
出处 《电机与控制应用》 北大核心 2017年第3期30-35,共6页 Electric machines & control application
基金 萧山区产业发展重大科技攻关项目(2014110)
关键词 轮毂电机 模糊神经网络 电子差速控制系统 hub motor fuzzy neural network electronic differential control system
  • 相关文献

参考文献5

二级参考文献26

共引文献69

同被引文献11

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部